Preview

Biological Products. Prevention, Diagnosis, Treatment

Advanced search
Vol 18, No 3 (2018)
View or download the full issue PDF (Russian)
https://doi.org/10.30895/2221-996X-2018-18-3

REVIEWS

140-149 1443
Abstract
Advances in ex vivo technologies of human genome editing have made it possible to develop new approaches to the treatment of genetic, oncological, infectious and other diseases, which may involve the use of biomedical cell products. However, despite the rapid development of these technologies and a large number of clinical trials conducted in many countries around the world, only 4 products (Strimvelis, Zalmoxis, Kymriah and Yescarta) containing ex vivo genetically modified human cells are authorised for use in the European Union and the United States of America. This paper considers three promising technologies (ZFN, TALEN and CRISPR) that allow for easy and effective editing of the genome at the sites of interest, thereby creating a platform for further development of the genetic engineering of human cells. It describes the technology of engineering chimeric antigen receptors (CARs). It also provides data on the efficacy and safety of the approved products: Strimvelis which contains autologous CD34+ cells transduced ex vivo with a retroviral vector containing adenosine deaminase gene, Zalmoxis which contains modified allogeneic T-cells, and two products: Kymriah and Yescarta which contain autologous T-cells with CARs to CD19 antigen, intended for the treatment of CD19+ hematological malignancies.
150-160 1512
Abstract

The intensive development of cellular technologies stipulates the introduction at the global level of medicinal products based on viable human cells, which in most countries are referred to as biomedical cell products. The authors conducted a comparative analysis of the regulatory framework in different countries and determined special aspects of regulation of cell therapy products (analogues of biomedical cell products). Some countries have mechanisms for priority review of cell therapy products for marketing authorization, such as accelerated assessment, accelerated approval, or conditional marketing authorisation. These mechanisms are currently absent in Russia, because of the novelty of the regulatory framework, and the biological properties of innovative cell products. Biomedical cell products are regarded as a separate class of medicinal products in Russia, they are not treated as biologicals and are regulated by the Federal Law No. 180-FZ «On Biomedical Cell Products» of June 23, 2016. The main difference in regulation of cell-based products in the Russian Federation is the principle of unified requirements for marketing authorisation of autologous, allogeneic, and combined biomedical cellular products, and the absence of the «hospital exemptions» mechanism that exists in many countries. This mechanism allows prescription and use of personalised autologous medicines produced in the laboratory of a medical institution for a particular patient.

161-167 1056
Abstract

Trypsin is a reagent widely used in the manufacture of biological medicinal products (BMPs). Until recently, pancreata of cattle, pigs and poultry were the main sources of trypsin preparations. The discovery of the disease called «transmissive spongiform encephalopathy» or «cow rabies» (TSE) in cattle in the late 1980s showed a clear need for limiting the use of this source. Given the potential risk of using trypsin obtained from cattle, porcine trypsin became more commonly used in the production of biological medicinal products. Enzymes obtained from raw materials of animal origin can be contaminated with circoviruses, parvo- and pestiviruses, and mycoplasmas that are common to pigs. Due to high resistance to physical and chemical treatment, these contaminants pose a potential risk to recipients of vaccines, as well as to other biological medicinal products. Prevention of contamination requires measures aimed at detection, reduction and inactivation of foreign agents, both in raw materials and during BMP production. The article considers the most common types of porcine trypsin contamination, methods of its detection, reduction and elimination. The article also contains information on the Russian and international requirements for the quality and safety of porcine trypsin used in the production of biological medicinal products.

168-174 1021
Abstract

Biotechnological products, like all other medicinal products, have to comply with efficacy, safety and quality requirements. Quality evaluation of medicines includes assessment of test methods used to control medicinal product quality (described in product specification files provided by the manufacturer), laboratory testing of samples using these methods, as well as assessment of the registration dossier materials, including materials on test method validation included into the product specification files. One of the most important quality parameters of biotechnological products is biological activity, i.e. specific ability of a product to induce a desired biological effect. The article presents the results of a detailed analysis of methods used for determination of biological (specific) activity that are described in product specification files of various biotechnological products. The aim of the study was to demonstrate the importance of proper presentation of methods used for assessment of biological (specific) activity of biotechnological products and familiarise specialists engaged in elaboration of product specification files with the principles of presenting data in the «Biological (specific) safety» section. The analysis of documentation helped summarise the most common mistakes and omissions, formulate general recommendations concerning the description of methods, develop a general structure of the «Biological (specific) safety» section with detailed guidance on what to include in each of the subsections. Rationalisation of information presented in this part of the product specification files will help reduce the number of expert body’s requests for additional information/documents and will help ensure that laboratory testing is performed at a high professional level and within a prescribed period of time.

ORIGINAL ARTICLES

175-183 1114
Abstract

Validation of production processes based on the Quality by Design (QbD) principles calls for thorough scientific understanding of the processes and enhancement of their stability by implementation of new technologies. The aim of the study consisted in substantiating a QbD-based technological approach to validation of commercial production of dornase alfa. For this purpose a design space was established in a scale-down model, i.e. 2 L reactors; the model was shown to be representative in terms of all parameters except for the reactor size; the similarity of hydrodynamic conditions, design characteristics and operation modes of laboratory, pilot and commercial scale reactors was established; the process scalability was demonstrated by using the PCA (Principal Component Analysis) multivariate mathematical model including the volume range of 2–1000 L, input and output process parameters and product quality attributes for a number of recombinant therapeutic products derived from the same CHO cell line and expression construction as dornase alfa producer. The article demonstrates the applicability of engineering space, which includes bioreactor design features and production process parameters, to different production scales by implementing 3 processes at the pilot scale (100 L) and 2 processes at the commercial scale (1000 L) and building a PCA model based on the obtained data.

184-190 1162
Abstract

Methods used to control the quality of peptide products depend on the level of development of analytical and bioorganic chemistry, and the level of instrumentation. Peptide identification is a difficult task and largely depends on the complexity of its structure. There does not exist a comprehensive and simple test, except for NMR, which, however, is rather expensive and time-consuming and involves complex data interpretations. Moreover, it does not allow for unambiguous determination of the peptide purity and formula (amino acid composition, sequence, chirality of amino acid residues). For this reason, a combination of methods is often used, including amino acid analysis, TLC/HPLC and mass spectrometry, and, less frequently, sequencing. Current international practice of peptide analysis is to use HPLC in combination with mass spectrometric, mainly tandem (HPLC-MS/MS), detection. According to literature sources the amino acid sequence of linear peptides can be analysed using various enzymes and subsequent identification of proteolysis products by mass spectrometry. This article presents approaches to the development of test methods for analysis of purity and identification testing of a small interfering RNA-based novel medicinal product, which will help standardise and control the quality of the production process.

191-197 1359
Abstract

Medicinal products fail sterility testing if visual observation shows the growth of microorganisms that manifests itself as turbidity, sedimentation, flocculation and other changes in the growth medium. A key factor allowing robust determination of changes in the culture that may be suspected of contamination is the quality of growth media used, namely their transparency, and absence of foreign matter detectable by microscopic examination of the growth media smears. The presence of such foreign matter makes it especially difficult to interpret the results of testing of immunobiological products, namely live bacterial vaccines, because they cause turbidity of the media due to their specific composition. The article dwells upon the results of testing (in terms of Transparency and Microbial content) of dehydrated growth media recommended by the State Pharmacopoeia of the Russian Federation, 13th ed., General monograph 1.2.4.0003.15 for sterility testing of immunobiological medicinal products. The study revealed the presence of microorganisms, including pathogenic ones, in the growth media. In view of the fact that certificates of analysis and technical documentation accompanying components of growth media and dehydrated growth media produced by most national and foreign manufacturers do not contain any data on the acceptable levels of microorganisms it is argued that these products have to be tested for microbial content. The study also investigated the ways of improving the quality of commercial dehydrated growth media at the preparation stage.

CHRONICLE



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2221-996X (Print)
ISSN 2619-1156 (Online)