Preview

Biological Products. Prevention, Diagnosis, Treatment

Advanced search

Molecular genetic methods for quality control of inactivated vaccines using a Chikungunya virus model: vaccine strain identification and completeness of virus inactivation

https://doi.org/10.30895/2221-996X-2024-24-3-279-293

Abstract

INTRODUCTION. The completeness of virus inactivation and the identity of the vaccine strain are essential parameters for the safety and quality of inactivated virus vaccines, which should be controlled during vaccine development and production. Currently, the most promising quality control methods for inactivated virus vaccines are molecular genetic methods, which provide rapid results with high sensitivity and specificity.

AIM. The aim of this study was the development of a real-time quantitative polymerase chain reaction (qPCR) method and an integrated cell culture real-time quantitative polymerase chain reaction (ICC-qPCR) method to assess the completeness of virus inactivation, as well as a reverse-transcription polymerase chain reaction assay coupled with restriction fragment length polymorphism analysis (RT-PCR-RFLP) to confirm the identity of the vaccine virus strain.

MATERIALS AND METHODS. This study used RNA of CHIKV genotypes (three strains of each of the four CHIKV genotypes, including Asian, West African (WAf), and East/Central/South African (ECSA) genotypes, and the Indian Ocean Lineage of the ECSA genotype (ECSA-IOL), which were identified by sequencing prior to analysis). Additionally, the study used the Nika21 CHIKV strain (ECSA genotype), the Nika21 CHIKV strain inactivated with β-propiolactone, and the Nika21 CHIKV strain antigen adsorbed on aluminium hydroxide. The methods used included real-time qPCR, RT-PCR-RFLP, and virus neutralisation.

RESULTS. The study identified a 218 bp fragment of the nsP1 gene (positions 789 to 1006) with restriction endonuclease recognition sites. These sites were present or absent in combinations specific to each of the four CHIKV genotypes. The authors selected primers for amplification of the specified gene region and tested the conditions for real-time qPCR and RT-PCR-RFLP. The study demonstrated the possibility of using the ICC-qPCR method to confirm the completeness of virus inactivation and the RT-PCR-RFLP method to identify the vaccine strain.

CONCLUSIONS. The study showed the advantages of using the ICC-qPCR method to confirm the completeness of antigen inactivation and the RT-PCR-RFLP method to identify the vaccine strain. These methods are more sensitive and faster than traditional culture methods. ICC-qPCR and RT-PCR-RFLP can be used at any stage of the production process for inactivated vaccines.

About the Authors

A. S. Oksanich
I. Mechnikov Research Institute of Vaccines and Sera
Russian Federation

Alexey S. Oksanich, Cand. Sci. (Biol.)

5A Maly Kazenny Ln., Moscow 105064



T. G. Samartseva
I. Mechnikov Research Institute of Vaccines and Sera
Russian Federation

Tatiana G. Samartseva

5A Maly Kazenny Ln., Moscow 105064



K. V. Kaa
Centre for Strategic Planning and Management of Biomedical Health Risks
Russian Federation

Konstantin V. Kaa

10/1 Pogodinskaya St., Moscow 119121



E. V. Otrashevskaia
I. Mechnikov Research Institute of Vaccines and Sera
Russian Federation

Elena V. Otrashevskaia

5A Maly Kazenny Ln., Moscow 105064



A. G. Krasko
Republican Research and Practical Center for Epidemiology and Microbiology
Belarus

Anatoli G. Krasko, Cand. Sci. (Med.)

23 Filimonov St., Minsk 220114



A. G. Laputina
I. Mechnikov Research Institute of Vaccines and Sera
Russian Federation

Armine G. Laputina

5A Maly Kazenny Ln., Moscow 105064



N. A. Netesova
State Research Center of Virology and Biotechnology “Vector”
Russian Federation

Nina A. Netesova, Dr. Sci. (Biol.)

12/A ABK, Koltsovo, Novosibirsk Region 630559



G. M. Ignatyev
I. Mechnikov Research Institute of Vaccines and Sera; Saint Petersburg Scientific Research Institute of Vaccines and Serums and the Enterprise for the Production of Bacterial Preparations
Russian Federation

George M. Ignatyev, Dr. Sci. (Med.), Prof.

5A Maly Kazenny Ln., Moscow 105064; 52 Svobody St., Krasnoe Selo, Saint Petersburg 198320



References

1. Correia Moreira BL, Aparecida Pereira L, Lappas Gimenez AP, Fernandes Inagaki JM, Raboni SM. Development and validation of a real-time RT-PCR assay for the quantification of rabies virus as quality control of inactivated rabies vaccines. J Virol Methods. 2019;270:46–51. https://doi.org/10.1016/j.jviromet.2019.04.025

2. Correia Moreira BL, Gimenez APL, Inagaki JMF, Raboni SM. Inactivated rabies vaccines: Standardization of an in vitro assay for residual viable virus detection. PLoS Negl Trop Dis. 2020;14(3):e0008142. https://doi.org/10.1371/journal.pntd.0008142

3. Zhou J, Ji G, Wen JN, Li J, Sheng W, Guo ZQ, et al. Effective inactivatian test of inactivated hepatitis A vaccine using integrated cell culture/strand-specific reverse transcriptase-poly-merase chain reaction. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 2008;22(6):488–91 (In Chinese). PMID: 19544655

4. Sundaram AK, Ewing D, Liang Z, Jani V, Cheng Y, Sun P, et al. Immunogenicity of adjuvanted psoralen-inactivated SARS-CoV-2 vaccines and SARS-CoV-2 spike protein DNA vaccines in BALB/c mice. Pathogens. 2021;10(5):626. https://doi.org/10.3390/pathogens10050626

5. Li D, Gu AZ, Yang W, He M, Hu X-H, Shi H-C. An integrated cell culture and reverse transcription quantitative PCR assay for detection of infectious rotaviruses in environmental waters. J Microbiol Methods. 2010;82(1):59–63. https://doi.org/10.1016/j.mimet.2010.04.003

6. Gallagher EM, Margolin AB. Development of an integrated cell culture—real-time RT-PCR assay for detection of reovirus in biosolids. J Virol Methods. 2007;139(2):195–202. https://doi.org/10.1016/j.jviromet.2006.10.001

7. Reynolds KA. Integrated cell culture/PCR for detection of enteric viruses in environmental samples. Methods Mol Biol. 2004;268:69–78. https://doi.org/10.1385/1-59259-766-1:069

8. Huang Y, Xiao S, Song D, Yuan Z. Efficacy of disinfectants for inactivation of Ebola virus in suspension by integrated cell culture coupled with real-time RT-PCR. J Hosp Infect. 2022;125:67–74. https://doi.org/10.1016/j.jhin.2022.04.008

9. Kargar M, Sadeghipour S, Nategh R. Environmental surveillance of non-polio enteroviruses in Iran. Virol J. 2009;6:149. https://doi.org/10.1186/1743-422X-6-149

10. Guo X, Wang S, Zhao CL, Li JW, Zhong JY. An integrated cell absorption process and quantitative PCR assay for the detection of the infectious virus in water. Sci Total Environ. 2018;635:964–71. https://doi.org/10.1016/j.scitotenv.2018.04.223

11. Blackmer F, Reynolds KA, Gerba CP, Pepper IL. Use of integrated cell culture-PCR to evaluate the effectiveness of poliovirus inactivation by chlorine. Appl Environ Microbiol. 2000;66(5):2267–8. https://doi.org/10.1128/aem.66.5.2267-2268.2000

12. Ignatev GM, Atrashevskaya EV, Suchanova LL, Sidorenko ES, Netesova NA. Molecular-genetic study of the RA-27/3 strain used for production of rubella vaccine. Journal of Microbiology, Epidemiology and Immunobiology. 2019;(4):38–46 (In Russ.). https://doi.org/10.36233/0372-9311-2019-4-38-46

13. Ignatyev GM, Atrasheuskaya EV, Sukhanova LL, Sidorenko ES, Netesova NA. Molecular genetic analysis of the strain Leningrad-16 used for the production of measles vaccine. Journal of Microbiology, Epidemiology and Immunobiology. 2020;(2):182–9 (In Russ.). https://doi.org/10.36233/0372-9311-2020-97-2-182-189

14. Loparev VN, Argaw T, Krause PR, Takayama M, Schmid DS. Improved identification and differentiation of varicellazoster virus (VZV) wild-type strains and an attenuated varicella vaccine strain using a VZV open reading frame 62-based PCR. J Clin Microbiol. 2000;38(9):3156–60. https://doi.org/10.1128/jcm.38.9.3156-3160.2000

15. Kulak MV, Belavin PA, Netesova NA, Yunasova TN, Golikova LN, Bektemirov TA, Ignatyev GM. Differentiation of the vaccine strain L-3 from other strains of the mumps virus by RT-PCR. BIOpreparations. Prevention, Diagnosis, Treatment. 2008;(4):7–10 (In Russ.). EDN: SATPMF

16. Ignatyev GM, Oksanich AS, Antonova LP, Samartseva TG, Mosolova SV, Mefed KM, et al. Molecular genetic testing of stability and identification of Vnukovo-32 strain used for production of the cultural concentrated purified inactivated dry rabies vaccine. BIOpreparations. Prevention, Diagnosis, Treatment. 2020;20(2):107–15 (In Russ.). https://doi.org/10.30895/2221-996X-2020-20-2-107-115

17. Otrasheuskaja ЕV, Trukhin VP, Merkulov VA, Ignatyev GM. Chikungunya vaccines: advances in the development and prospects for marketing approval. Biological Products. Prevention, Diagnosis, Treatment. 2023;23(1):42–64 (In Russ.). https://doi.org/10.30895/2221-996X-2023-23-1-42-64

18. Schrauf S, Tschismarov R, Tauber E, Ramsauer K. Current efforts in the development of vaccines for the prevention of Zika and Chikungunya virus infections. Front Immunol. 2020:11:592–612. https://doi.org/10.3389/fimmu.2020.00592

19. Tiwari M, Parida M, Santhosh SR, Khan M, Dash PK, Rao PV. Assessment of immunogenic potential of Vero adapted formalin inactivated vaccine derived from novel ECSA genotype of Chikungunya virus. Vaccine. 2009:27(18):2513–22. https://doi.org/10.1016/j.vaccine.2009.02.062

20. Kumar M, Sudeep AB, Arankalle VA. Evaluation of recombinant E2 protein-based and whole-virus inactivated candidate vaccines against Сhikungunya virus. Vaccine. 2012:30(43):6142–9. https://doi.org/10.1016/j.vaccine.2012.07.072

21. Atrasheuskaya EV, Kazakova EV, Zhirenkina EN, Trukhin VP, Ignatyev GM. The study of flaviviruses and Chikungunya virus seroprevalence in Nicaragua—virus-specific anti body avidity assay as a tool for differential diagnosis. Journal of Microbiology, Epidemiology and Immunobiology. 2022;99(2):215–24 (In Russ.). https://doi.org/10.36233/0372-9311-196

22. Lukin EP, Chernikova NK. Duration of humoral postvaccinal and postinfectious immunity to Venezuelan equine encephalomyelitis virus. Problems of Virology. 1993;(2):71–4 (In Russ.).

23. Kaa KV, Ignatyev GM, Sinyugina AA, Ishmukhametov AA. Susceptibility of various cell lines to the Chikungunya virus and method selection for commercial-scale production of viral material. Biological Products. Prevention, Diagnosis, Treatment. 2023;23(1):11–20 (In Russ.). https://doi.org/10.30895/2221-996X-2023-23-1-111-120

24. Ignatyev GM, Kaa KV, Antonova LP, Atrasheuskaya EV, Ishmukhametov AA. Immunogenic properties of the preparation containing the Chikungunya virus antigen inactivated by β-propiolactone. Journal of Microbiology, Epidemiology and Immunobiology. 2021;(5):519–27 (In Russ.). https://doi.org/10.36233/0372-9311-159

25. Oksanich AS, Krasko AG, Samartseva TG, Gasich EL, Ignatyev GM. The use of quantitative enzyme-linked immunosorbent assay for the determination of S-antigen concentration in whole-virion inactivated adsorbed coronavirus vaccines. Biological Products. Prevention, Diagnosis, Treatment. 2022;22(4):403–15 (In Russ.). https://doi.org/10.30895/2221-996X-2022-22-4-405-413

26. Frolov I, Frolova EI. Molecular virology of Chikungunya virus. Curr Top Microbiol Immunol. 2022;435:1–31. https://doi.org/10.1007/82_2018_146

27. Ryu H, Schrantz KA, Brinkman NE, Boczek LA. Applicability of integrated cell culture reverse transcriptase quantitative PCR (ICC-RTqPCR) for the simultaneous detection of the four human enteric enterovirus species in disinfection studies. J Virol Methods. 2018;258:35–40. https://doi.org/10.1016/j.jviromet.2018.05.008

28. Ryu H, Cashdollar JL, Fout G, Schrantz KA, Hayes S. Applicability of integrated cell culture quantitative PCR (ICC-qPCR) for the detection of infectious adenovirus type 2 in UV disinfection studies. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2015;50(8):777–87. https://doi.org/10.1080/10934529.2015.1019795

29. Paessler S, Weaver SC. Vaccines for Venezuelan equine encephalitis. Vaccine. 2009;27 Suppl 4:D80–5. https://doi.org/10.1016/j.vaccine.2009.07.095

30. Ryder S, Perez M, Avila J, Briceno A. Deteccion de anticuerpos al virus de la encephalitis equine venezolana en equidos de los Distritos Mara y Paez de la Guajira Venezolana. 1984. I. Evaluacion prevacuna. Investigacion Clinica. 2013;28(4).

31. Kim HR, Kang MS, Kim MJ, Lee HS, Kwon YK. Restriction fragment length polymorphism analysis of multiple genome regions of Korean isolates of infectious laryngotracheitis virus collected from chickens. Poult Sci. 2013;(8):2053–8. https://doi.org/10.3382/ps.2013-03134


Supplementary files

1. Table 2. Structure of oligonucleotides for real-time reverse-transcription polymerase chain reaction (rt-RT-PCR) for Chikungunya virus
Subject
Type Исследовательские инструменты
Download (735KB)    
Indexing metadata ▾
2. Table 3. Restriction sites in the amplified nsP1 gene fragment of different genotypes of Chikungunya virus (CHIKV)
Subject
Type Исследовательские инструменты
Download (736KB)    
Indexing metadata ▾
3. Fig. 1. Fluorescence threshold cycle (Ct) values as a function of the concentration of the standard solution (plasmid DNA with the Chikungunya nsP1 gene sequence).
Subject
Type Исследовательские инструменты
Download (514KB)    
Indexing metadata ▾

Review

For citations:


Oksanich A.S., Samartseva T.G., Kaa K.V., Otrashevskaia E.V., Krasko A.G., Laputina A.G., Netesova N.A., Ignatyev G.M. Molecular genetic methods for quality control of inactivated vaccines using a Chikungunya virus model: vaccine strain identification and completeness of virus inactivation. Biological Products. Prevention, Diagnosis, Treatment. 2024;24(3):279-293. (In Russ.) https://doi.org/10.30895/2221-996X-2024-24-3-279-293

Views: 2295


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2221-996X (Print)
ISSN 2619-1156 (Online)