Preview

Biological Products. Prevention, Diagnosis, Treatment

Advanced search

Identification and genotyping of Chikungunya virus using reverse transcription polymerase chain reaction and restriction fragment length polymorphism methods

https://doi.org/10.30895/2221-996X-2024-559

Abstract

INTRODUCTION. Chikungunya virus (CHIKV) genotyping involves sequencing fractions of genes encoding E1, E2, and nsP1 proteins or the entire genome of the virus. Available reagent kits or polymerase chain reaction protocols cannot be used for CHIKV genotyping, and nucleic acid sequencing requires expensive equipment and materials, which are not always available. Therefore, it seems promising to use a simpler and more cost-effective restriction fragment length polymorphism (RFLP) method, which has not previously been used for CHIKV genotyping.

AIM. This study aimed to investigate the possibility of using reverse transcription polymerase chain reaction (RT-PCR) and RFLP for CHIKV identification and genotyping.

MATERIALS AND METHODS. The experimental study used RNA from CHIKV strains of four genotypes, including the Asian, West African (WAf), and East/Central/South African (ECSA) genotypes, and the Indian Ocean Lineage of the ECSA genotype (ECSA-IOL). The study used RT-PCR followed by DNA restriction and restriction fragment length analysis.

RESULTS. The nsP2 gene fragment of 648 bp in length (positions 3806 to 4453) contains recognition sites for the restriction endonucleases PspEI, PvuII, and DraI. The presence or absence of these sites generates a different combination specific to each of the four CHIKV genotypes. The authors designed primers for amplification of the selected gene region and performed RTPCR and RFLP.

CONCLUSIONS. The RFLP method can be used for rapid CHIKV identification and genotyping. The method provides results within a few hours and does not require high-tech equipment.

About the Authors

N. A. Netesova
State Research Center for Virology and Biotechnology “Vector”
Russian Federation

Nina A. Netesova, Dr. Sci. (Biol.)

12/A ABK, Koltsovo, Novosibirsk Region 630559



M. A. Abdurashitov
SibEnzyme Ltd
Russian Federation

Murat A. Abdurashitov, Cand. Sci. (Biol.)

2/12 Academician Timakov St., Novosibirsk 630117



T. G. Samartseva
I. Mechnikov Research Institute of Vaccines and Sera
Russian Federation

Tatiana G. Samartseva

5A Maly Kazenny Ln., Moscow 105064



O. V. Klimovich
Republican Research and Practical Center for Epidemiology and Microbiology
Belarus

Olga V. Кlimovich

23 Filimonov St., Minsk 220114



A. S. Oksanich
I. Mechnikov Research Institute of Vaccines and Sera
Russian Federation

Alexey S. Oksanich, Cand. Sci. (Biol.)

5A Maly Kazenny Ln., Moscow 105064



Е. V. Otrashevskaia
I. Mechnikov Research Institute of Vaccines and Sera
Russian Federation

Еlena V. Otrashevskaia

5A Maly Kazenny Ln., Moscow 105064



G. M. Ignatyev
I. Mechnikov Research Institute of Vaccines and Sera; Saint Petersburg Scientific Research Institute of Vaccines and Serums and the Enterprise for the Production of Bacterial Preparations
Russian Federation

George M. Ignatyev, Dr. Sci. (Med.), Professor

5A Maly Kazenny Ln., Moscow 105064; 52 Svobody St., Krasnoe Selo, Saint Petersburg 198320



References

1. Burt FJ, Chen W, Miner JJ, Lenschow DJ, Merits A, Schnettler E, et al. Chikungunya virus: an update on the biology and pathogenesis of this emerging pathogen. Lancet Infect Dis. 2017;17(4):e107–17. https://doi.org/10.1016/s1473-3099(16)30385-1

2. Simo FBN, Burt FJ, Makoah NA. Chikungunya virus diagnosis: a review of current antigen detection methods. Trop Med Infect Dis. 2023;8(7):365. https://doi.org/10.3390/tropicalmed8070365

3. Cunha MS, Costa PAG, Correa IA, de Souza MRM, Calil PT, Duarte da Silva GP, et al. Chikungunya virus: an emergent arbovirus to the South American continent and a continuous threat to the world. Front Microbiol. 2020;11:1297. https://doi.org/10.3389/fmicb.2020.01297

4. Tanabe ELL, Tanabe ISB, Santos ECD, Marques JPDS, Borges AA, Lima MC, et al. Report of East-Central South African Chikungunya virus genotype during the 2016 outbreak in the Alagoas State, Brazil. Rev Inst Med Trop Sao Paulo. 2018;60:e19. https://doi.org/10.1590/s1678-9946201860019

5. Panning M, Grywna K, Van Esbroeck M, Emmerich P, Drosten C. Chikungunya fever in travelers returning to Eu rope from the Indian Ocean region, 2006. Emerg Infect Dis. 2008;14(3):416–22. https://doi.org/10.3201/eid1403.070906

6. Lessa-Aquino C, Trinta KS, Pestana CP, Ribeiro MO, Sucupira MVF, Boia MN, et al. Detection of East/Central/ South African genotype Chikungunya virus during an outbreak in a southeastern state of Brazil. Epidemiol Infect. 2018;146(16):2056–58. https://doi.org/10.1017/s0950268818002467

7. Vega-Rua A, Zouache K, Caro V, Diancourt L, Delaunay P, Grandadam M, et al. High efficiency of temperate Aedes albopictus to transmit Chikungunya and dengue viruses in the Southeast of France. PLoS One. 2013;8(3):e59716. https://doi.org/10.1371/journal.pone.0059716

8. Mattar S, Miranda J, Pinzon H, Tique V, Bolanos A, Aponte J, et al. Outbreak of Chikungunya virus in the north Carib bean area of Colombia: clinical presentation and phylogenetic analysis. J Infect Dev Ctries. 2015;9(10):1126–32. https://doi.org/10.3855/jidc.6670

9. Johnson BW, Russell BJ, Goodman CH. Laboratory diagnosis of Chikungunya virus infections and commercial sources for diagnostic assays. J Infect Dis. 2016;214(suppl 5):S471–4. https://doi.org/10.1093/infdis/jiw274

10. Waggoner JJ, Ballesteros G, Gresh L, Mohamed-Hadley A, Tellez Y, Sahoo MK, et al. Clinical evaluation of a single-reaction real-time RT-PCR for pan-dengue and Chikungunya virus detection. J Clin Virol. 2016;78:57–61. https://doi.org/10.1016/j.jcv.2016.01.007

11. Carletti F, Bordi L, Chiappini R, Ippolito G, Sciarrone MR, Capobianchi MR, et al. Rapid detection and quantification of Chikungunya virus by a one-step reverse transcription polymerase chain reaction real-time assay. Am J Trop Med Hyg. 2007;77(3):521–4. https://doi.org/10.4269/ajtmh.2007.77.521

12. Cecilia D, Kakade M, Alagarasu K, Patil J, Salunke A, Parashar D, Shah PS. Development of a multiplex real-time RT-PCR assay for simultaneous detection of dengue and Chikungunya viruses. Arch Virol. 2015;160(1):323–7. https://doi.org/10.1007/s00705-014-2217-x

13. Kulak MV, Belavin PA, Netesova NA, Yunasova TN, Golikova LN, Bektemirov TA, Ignatyev GM. Differentiation of the vaccine strain L-3 from other strains of the mumps virus by RT-PCR. BIOpreparations. Prevention, Diagnosis, Treatment. 2008;(4):7–10 (In Russ.). EDN: SATPMF

14. Ignatyev GM, Atrashevskaya EV, Suchanova LL, Sidorenko ES, Netesova NA. Molecular-genetic study of the RA27/3 strain used for the production of rubella vaccine. Journal of Microbiology, Epidemiology and Immunobiology. 2019;96(4):38–46 (In Russ.). https://doi.org/10.36233/0372-9311-2019-4-38-46

15. Ignatyev GM, Atrasheuskaya AV, Sukhanova LL, Sidorenko ES, Netesova NA. Molecular genetic analysis of the strain Leningrad-16 used for the production of measles vaccine. Journal of Microbiology, Epidemiology and Immunobiology. 2020;(2):182–9 (In Russ.). https://doi.org/10.36233/0372-9311-2020-97-2-182-189


Supplementary files

Review

For citations:


Netesova N.A., Abdurashitov M.A., Samartseva T.G., Klimovich O.V., Oksanich A.S., Otrashevskaia Е.V., Ignatyev G.M. Identification and genotyping of Chikungunya virus using reverse transcription polymerase chain reaction and restriction fragment length polymorphism methods. Biological Products. Prevention, Diagnosis, Treatment. 2024;24(3):270-278. https://doi.org/10.30895/2221-996X-2024-559

Views: 2294


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2221-996X (Print)
ISSN 2619-1156 (Online)