Development of cell lines producing recombinant therapeutic proteins, with denosumab as a case study
https://doi.org/10.30895/2221-996X-2025-553
Abstract
INTRODUCTION. A key factor in the creation of biotechnological medicinal products is to establish cell lines for high-yield production of recombinant proteins. The development of selection protocols and highly efficient screening approaches for cell lines producing target proteins is a necessary step in the development of recombinant technology for high-yield target protein production.
AIM. This study aimed to derive producer cell lines from a CHO suspension cell line for high-yield production of the recombinant monoclonal antibody denosumab.
MATERIALS AND METHODS. A CHO-K1 suspension cell line was cultured using serum- and animal component-free media and feeds. The cells were transfected with plasmids containing light and heavy chains of denosumab by electroporation using a MaxCyte STX system. The transfected cells were selected under antibiotic pressure (hygromycin and geneticin). Monoclonal cell lines were obtained using a ClonePix FL system. Leader monoclonal cell lines were identified by determining denosumab concentrations by enzyme-linked immunosorbent assay (ELISA) following fed-batch culture.
RESULTS. The optimum concentrations of antibiotics for the selection of CHO-derived denosumab-producing cell lines were 600 mg/L for hygromycin and 600 mg/L for geneticin. The selection process following transfection was successful in 1041 (about 54%) of 1920 minipools. Denosumab-producing minipools were identified by screening culture fluid samples from 96-, 24-, and 6-well plates using ELISA. Then, 23 leader minipools were chosen and adapted to suspension culture in shaker flasks. The growth and production characteristics of these 23 minipools indicated the leader minipool for cloning (mp-19). This minipool provided a denosumab yield of 1.92 g/L on day 7 of fed-batch culture. Using mp-19, the authors obtained monoclonal cell lines providing up to 6.5 g/L denosumab yields on day 9 of fed-batch culture.
CONCLUSIONS. The authors obtained monoclonal cell lines for high-yield denosumab production. The offered approach to producer cell line development can be applied to the production of various recombinant proteins, including monoclonal antibodies, enzymes, and blood coagulation factors.
Keywords
About the Authors
S. S. TimonovaRussian Federation
Sofia S. Timonova, Cand. Sci. (Biol.)
14 Vladimirskaya St., Volginsky, Petushinsky District, Vladimir Region 601125
I. A. Kirik
Russian Federation
Inessa A. Kirik, Cand. Sci. (Biol.)
14 Vladimirskaya St., Volginsky, Petushinsky District, Vladimir Region 601125
M. A. Filatova
Russian Federation
Maria A. Filatova, Cand. Sci. (Vet.)
14 Vladimirskaya St., Volginsky, Petushinsky District, Vladimir Region 601125
A. I. Anfilatova
Russian Federation
Anastasia I. Anfilatova
14 Vladimirskaya St., Volginsky, Petushinsky District, Vladimir Region 601125
S. S. Shubina
Russian Federation
Sofia S. Shubina
14 Vladimirskaya St., Volginsky, Petushinsky District, Vladimir Region 601125
A. A. Polupanova
Russian Federation
Anna A. Polupanova
14 Vladimirskaya St., Volginsky, Petushinsky District, Vladimir Region 601125
A. F. Gabdrakhmanova
Russian Federation
Alina F. Gabdrakhmanova
14 Vladimirskaya St., Volginsky, Petushinsky District, Vladimir Region 601125
E. S. Ivanov
Russian Federation
Evgeny S. Ivanov
14 Vladimirskaya St., Volginsky, Petushinsky District, Vladimir Region 601125
V. N. Bade
Russian Federation
Veronika N. Bade, Cand. Sci. (Biol.)
14 Vladimirskaya St., Volginsky, Petushinsky District, Vladimir Region 601125
A. A. Piskunov
Russian Federation
Aleksandr A. Piskunov, Cand. Sci. (Biol.)
14 Vladimirskaya St., Volginsky, Petushinsky District, Vladimir Region 601125
R. A. Khamitov
Russian Federation
Ravil A. Khamitov, Dr. Sci. (Med.), Prof.
14 Vladimirskaya St., Volginsky, Petushinsky District, Vladimir Region 601125
References
1. Zhu MM, Mollet M, Hubert RS, Kyung YS, Zhang GG. Industrial production of therapeutic proteins: Cell lines, cell culture, and purification. Handbook of Industrial Chemistry and Biotechnology. 2017;(3):1639–69. https://doi.org/10.1007/978-3-319-52287-6_29
2. Yang Y, Li Z, Li Q, Ma K, Lin Y, Feng H, Wang T. Increase recombinant antibody yields through optimizing vector design and production process in CHO cells. Appl Microbiol Biotechnol. 2022;106(13–16):4963–75. https://doi.org/10.1007/s00253-022-12051-5
3. Fischer S, Handrick R, Otte K. The art of CHO cell engineering: A comprehensive retrospect and future perspectives. Biotechnol Adv. 2015;33(8):1878–96. https://doi.org/10.1016/j.biotechadv.2015.10.015
4. Zhu J. Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv. 2012;30(5):1158–70. https://doi.org/10.1016/j.biotechadv.2011.08.022
5. Thombre S, Gadgil M. Increase in efficiency of media utilization for recombinant protein production in Chinese hamster ovary culture through dilution. Biotechnol Appl Biochem. 2011;58(1):25–31. https://doi.org/10.1002/bab.9
6. Pal D, Patel G, Dobariya P, Nile SH, Pande AH, Banerjee UC. Optimization of medium composition to increase the expression of recombinant human interferon-β using the Plackett–Burman and central composite design in E. coli SE1. 3 Biotech. 2021;11(5):226. https://doi.org/10.1007/s13205-021-02772-1
7. Li W, Fan Z, Lin Y, Wang T-Y. Serum-free medium for recombinant protein expression in Chinese hamster ovary cells front. Front Bioeng Biotechnol. 2021;9:646363. https://doi.org/10.3389/fbioe.2021.646363
8. Almo SC, Love JD. Better and faster: Improvements and optimization for mammalian recombinant protein production. Curr Opin Struct Biol. 2014;26:39–43. https://doi.org/10.1016/j.sbi.2014.03.006
9. Schellenberg J, Nagraik T, Wohlenberg OJ, Ruhl S, Bahnemann J, Scheper T, Solle D. Stress-induced increase of monoclonal antibody production in CHO cells. Eng Life Sci. 2022;22(5):427–36. https://doi.org/10.1002/elsc.202100062
10. Zhu X, Zhang K, Luo H, Wu J. Overexpression of the class A penicillin-binding protein PonA in Bacillus improves recombinant protein production. Bioresour Technol. 2023;383:129219. https://doi.org/10.1016/j.biortech.2023.129219
11. Timonova SS, Smolova KA, Zaripova DT, Pantyushenko MS, Koroleva MA, Anisimov RL, et al. Increasing productivity of arylsulfatase B-producing cell line by coexpression of formylglycine-generating enzyme. Biological Products. Prevention, Diagnosis, Treatment. 2022;22(1):80–93 (In Russ.). https://doi.org/10.30895/2221-996X-2022-22-1-80-93
12. Lu J, Hu D, Zhang Y, Ma C, Shen L, Shuai B. Current comprehensive understanding of denosumab (the RANKL neutralizing antibody) in the treatment of bone metastasis of malignant tumors, including pharmacological mechanism and clinical trials. Front Oncol. 2023;13:1133828. https://doi.org/10.3389/fonc.2023.1133828
13. Di Lorenzo L. Denosumab in elderly osteoporotic patients. A narrative review. Clin Ter. 2023;174(6):545–9. https://doi.org/10.7417/CT.2023.5023
14. Abduelkarem AR, Guella A, Hamrouni AM, Hassanein MM, Nasr A, Rana O. Denosumab use in chronic kidney disease associated osteoporosis: A narrative review. Risk Manag Healthc Policy. 2023;16:1809–13. https://doi.org/10.2147/RMHP.S426869
15. Tan X, Zhang Y, Wei D, Yang Y, Xiang F. Denosumab for giant cell tumors of bone from 2010 to 2022: A bibliometric analysis. Clin Exp Med. 2023;23(7):3053–75. https://doi.org/10.1007/s10238-023-01079-0
16. Imre A, Zoltán S, Miklós S. Current indications for denosumab in benign bone tumours. EFORT Open Rev. 2023;8(12):895–905. https://doi.org/10.1530/EOR-23-0138
17. Timonova SS, Pantyushenko MS, Tikhonov RV, Piskunov AA, Bade VN. Optimization of the cultivation process of a producer clone of the recombinant lysosomal iduronate-2-sulfatase enzyme. Biotechnology. 2021;37(2):34–47 (In Russ.). https://doi.org/10.21519/0234-2758-2021-37-2-34-47
18. Timonova SS, Pavelko VI, Kirik IA, Bade VN, Malygina TO, Khamitov RA, Piskunov AA. Principle of express selection of leading producing clones of monoclonal antibodies in the development of stable CHO-based cell lines. Biotechnology. 2019;35(4):65–72 (In Russ.). https://doi.org/10.21519/0234-2758-2019-35-4-65-72
19. Tihanyi B, Nyitray L. Recent advances in CHO cell line development for recombinant protein production. Drug Discov Today Technol. 2020;38:25–34. https://doi.org/10.1016/j.ddtec.2021.02.003
20. Lewis NE, Liu X, Li Y, Nagarajan H, Yerganian G, O’Brien E. Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome. Nat Biotechnol. 2013;31(8):759–65. https://doi.org/10.1038/nbt.2624
21. Huang YM, Hu W, Rustandi E, Chang K, Yusuf-Makagiansar H, Ryll T. Maximizing productivity of CHO cell-based fed-batch culture using chemically defined media conditions and typical manufacturing equipment. Biotechnol Prog. 2010;26(5):1400–10. https://doi.org/10.1002/btpr.436
22. Lai T, Yang Y, Ng SK. Advances in Mammalian cell line development technologies for recombinant protein production. Pharmaceuticals (Basel). 2013;6(5):579–603. https://doi.org/10.3390/ph6050579
23. Kim JY, Kim YG, Lee GM. CHO cells in biotechnology for production of recombinant proteins: Current state and further potential. Appl Microbiol Biotechnol. 2012;93(3):917–30. https://doi.org/10.1007/s00253-011-3758-5
24. El Maï N, Donadio-Andréi S, Iss C, Calabro V, Ronin C. Engineering a human-like glycosylation to produce therapeutic glycoproteins based on 6-linked sialylation in CHO cells. Methods Mol Biol. 2013;988:19–29. https://doi.org/10.1007/978-1-62703-327-5_2
25. Boeger H, Bushnell DA, Davis R, Griesenbeck J, Lorch Y, Strattan JS, et al. Structural basis of eukaryotic gene transcription. FEBS Lett. 2005;579(4):899–903. https://doi.org/10.1016/j.febslet.2004.11.027
26. Bandaranayake A.D, Almo SC. Recent advances in mammalian protein production. FEBS Lett. 2014;588(2):253–260. https://doi.org/10.1016/j.febslet.2013.11.035
27. Xu X, Nagarajan H, Lewis NE, Pan S, Cai Z, Liu X, et al. The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat Biotechnol. 2011;29(8):735–41. https://doi.org/10.1038/nbt.1932
28. Li F, Vijayasankaran N, Shen AY, Kiss R, Amanullah A. Cell culture processes for monoclonal antibody production. MAbs. 2010;2(5):466–79. https://doi.org/10.4161/mabs.2.5.12720
29. Dumont J, Euwart D, Mei B, Estes S, Kshirsagar R. Human cell lines for biopharmaceutical manufacturing: History, status, and future perspectives. Crit Rev Biotechnol. 2016;36(6):1110–22. https://doi.org/10.3109/07388551.2015.1084266
30. Liu L. Antibody glycosylation and its impact on the pharmacokinetics and pharmacodynamics of monoclonal antibodies and Fc-fusion proteins. J Pharm Sci. 2015;104(6):1866–84. https://doi.org/10.1002/jps.24444
31. Sommer JM, Buyue Y, Bardan S, Peters RT, Jiang H, Kamphaus GD, et al. Comparative field study: impact of laboratory assay variability on the assessment of recombinant factor IX Fc fusion protein (rFIXFc) activity. Thromb Haemost. 2014;112(5):932–40. https://doi.org/10.1160/TH13-11-0971
32. Butler M, Spearman M. The choice of mammalian cell host and possibilities for glycosylation engineering. Curr Opin Biotechnol. 2014;30:107–12. https://doi.org/10.1016/j.copbio.2014.06.010
33. Maksimenko O, Gasanov NB, Georgiev P. Regulatory elements in vectors for efficient generation of cell lines producing target proteins. Acta Naturae. 2015;7(3):15–26. https://doi.org/10.32607/20758251-2015-7-3-15-26
34. Csató-Kovács E, Salamon P, Fikó-Lászlo S, Kovács K, Koka A, András-Korodi M, et al. Development of a mammalian cell line for stable production of anti-PD-1. Antibodies (Basel). 2024;13(4):82. https://doi.org/10.3390/antib13040082
35. Grav LM, Rojek JB, la Cour Karottki KJ, Lee JS, Kildegaard HF. Application of CRISPR/Cas9 genome editing to improve recombinant protein production in CHO cells. Methods Mol Biol. 2025;2853:49–69. https://doi.org/10.1007/978-1-0716-4104-0_5
36. Chong ZX, Yeap SK, Ho WY. Transfection types, methods and strategies: A technical review. PeerJ. 2021;9:e11165. https://doi.org/10.7717/peerj.11165
37. Welch JT, Arden NS. Considering “clonality”: A regulatory perspective on the importance of the clonal derivation of mammalian cell banks in biopharmaceutical development. Biologicals. 2019;62:16–21. https://doi.org/10.1016/j.biologicals.2019.09.006
38. Timonova SS, Pavelko VI, Kiric IA, Bade VN, Piskunova AA, Khamitov RA. Monte Carlo method for calculating the probability of monoclonality of cell lines. Biotechnology. 2024;40(1):100–8 (In Russ.). https://doi.org/10.56304/S0234275824010113
39. Goldrick S, Alosert H, Lovelady C, Bond NJ, Senussi T, Hatton D, et al. Next-generation cell line selection methodology leveraging data lakes, natural language generation and advanced data analytics. Front Bioeng Biotechnol. 2023;11:1160223. https://doi.org/10.3389/fbioe.2023.1160223
Supplementary files
![]() |
1. Fig. S1. Selection of antibiotic concentrations for the CHO cell line: A and C, viable cell density (VCD); B and D, cell viability. Legend: control, antibiotics-free medium; hygro, medium with hygromycin (numbers indicate concentrations, mg/L); G418, medium with geneticin (numbers indicate concentrations, mg/L). | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(1MB)
|
Indexing metadata ▾ |
![]() |
2. Fig. S2. Characteristics of denosumab-producing clones during 9 days of fed-batch culture. A, cell viability; B, viable cell density (VCD); C, cell productivity; D, cumulative cell density (CCD) vs cell productivity; clone, monoclonal cell lines producing denosumab. | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(736KB)
|
Indexing metadata ▾ |
Review
For citations:
Timonova S.S., Kirik I.A., Filatova M.A., Anfilatova A.I., Shubina S.S., Polupanova A.A., Gabdrakhmanova A.F., Ivanov E.S., Bade V.N., Piskunov A.A., Khamitov R.A. Development of cell lines producing recombinant therapeutic proteins, with denosumab as a case study. Biological Products. Prevention, Diagnosis, Treatment. (In Russ.) https://doi.org/10.30895/2221-996X-2025-553