Preview

Biological Products. Prevention, Diagnosis, Treatment

Advanced search

Isolation of novel Actinomyces oris and Aggregatibacter actinomycetemcomitans bacteriophages and study of their biological characteristics in vitro

https://doi.org/10.30895/2221-996X-2024-24-1-103-116

Abstract

SCIENTIFIC RELEVANCE. The incidence of periodontal infections with antibiotic-resistant strains of Actinomyces oris and Aggregatibacter actinomycetemcomitans capable of forming biofilms in the oral cavity is increasing, and the effectiveness of antimicrobials against biofilms is insufficient. Therefore, the isolation of bacteriophages active against A. oris and Ag. actinomycetemcomitans is an urgent task.

AIM. This study aimed to isolate bacteriophages active against A. oris and Ag. actinomycetemcomitans, study their biological properties, and select optimum culture conditions providing pure lines and high titres of bacteriophages.

MATERIALS AND METHODS. Bacteriophages were isolated from biosamples of saliva, dental plaque, and periodontal pocket contents. The study determined bacteriophage characteristics, including the optimum multiplicity of infection, phage–cell system cultivation time, resistance to various temperatures and pH, and storage stability. Bacteriophage morphology was studied using transmission electron microscopy. Negative colony morphology, lytic activity, host range, and specificity were assessed using spot testing and the Gratia method. Bacterial strains were obtained from the strain collection of the Micromir research and production centre.

RESULTS. The authors isolated and studied 3 novel bacteriophages active against A. oris (vB_AorP_1/G-12, vB_AorP_2/Ch-28, and vB_AorP_3/Bl-35) and 1 bacteriophage active against Ag. actinomycetemcomitans (vB_AacS_1/Dc-1). The A. oris bacteriophages were classified as podoviruses, and the vB_AacS_1/Dc-1 bacteriophage was classified as a siphovirus. The phages formed completely transparent round plaques without a halo, with a diameter ranging from 0.8±0.1 to 4.0±0.2 mm. The optimum parameters established to obtain pure phages with maximum titres included a multiplicity of infection of 0,1–10 and phage–cell system cultivation time of 8–12 hours. The study demonstrated the ability of A. oris bacteriophages to lyse Actinomyces naeslundii strains. Of the 15 A. oris bacteriophage strains studied, vB_AorP_1/G-12, vB_AorP_2/Ch-28, and vB_AorP_3/Bl-35 lysed 10, 8, and 12 bacterial strains, respectively. The vB_AacS_1/Dc-1 phage isolate exhibited lytic activity against both tested strains of Ag. actinomycetemcomitans. The studied phages demonstrated stability under abiotic stress and long-term storage conditions.

CONCLUSIONS. The authors isolated 3 novel bacteriophages active against A. oris and 1 bacteriophage active against Ag. actinomycetemcomitans and studied their biological properties. The isolated bacteriophages are promising as candidates for further research using clinical strains and whole-genome sequencing.

About the Authors

T. A. Kochetova
Research and Production Centre Micromir, LLC
Russian Federation

Tatiana A. Kochetova

5/23 Bldg.1, Nizhny Kiselny Ln., Moscow 107031



V. V. Yuskevich
Research and Production Centre Micromir, LLC
Russian Federation

Victoria V. Yuskevich, Cand. Sci. (Biol.)

5/23 Bldg.1, Nizhny Kiselny Ln., Moscow 107031



F. M. Zurabov
Research and Production Centre Micromir, LLC
Russian Federation

Fedor M. Zurabov

5/23 Bldg.1, Nizhny Kiselny Ln., Moscow 107031



G. T. Sadykova
Research and Production Centre Micromir, LLC
Russian Federation

Gulnur T. Sadykova

5/23 Bldg.1, Nizhny Kiselny Ln., Moscow 107031



P. V. Medvedev
Research and Production Centre Micromir, LLC
Russian Federation

Pavel V. Medvedev

5/23 Bldg.1, Nizhny Kiselny Ln., Moscow 107031



V. M. Popova
Research and Production Centre Micromir, LLC
Russian Federation

Valentina M. Popova, Cand. Sci. (Med.)

5/23 Bldg.1, Nizhny Kiselny Ln., Moscow 107031



References

1. Periasamy S, Kolenbrander PE. Central role of the early colonizer Veillonella sp. in establishing multispecies biofilm communities with initial, middle, and late colonizers of enamel. J Bacteriol. 2010;192(12):2965–72. https://doi.org/10.1128/JB.01631-09

2. Wu C, Mishra A, Reardon ME, Huang IH, Counts SC, Das A, Ton-That H. Structural determinants of Actinomyces sortase SrtC2 required for membrane localization and assembly of type 2 fimbriae for interbacterial coaggregation and oral biofilm formation. J Bacteriol. 2012;194(10):2531–9. https://doi.org/10.1128/JB.00093-12

3. Sterzenbach T, Helbig R, Hannig C, Hannig M. Bioadhesion in the oral cavity and approaches for biofilm management by surface modifications. Clin Oral Investig. 2020;24(12):4237–60. https://doi.org/10.1007/s00784-020-03646-1

4. Das V, Vinod V, Biswas L, Kumar A, Biswas R. An update on possible alternative therapeutics for future periodontal disease management. J Appl Microbiol. 2023;134(1):lxac039. https://doi.org/10.1093/jambio/lxac039

5. Mombelli A. Microbial colonization of the periodontal pocket and its significance for periodontal therapy. Periodontol 2000. 2018;76(1):85–96. https://doi.org/10.1111/prd.12147

6. Szafrański SP, Winkel A, Stiesch M. The use of bacteriophages to biocontrol oral biofilms. J Biotechnol. 2017;250:29–44. https://doi.org/10.1016/j.jbiotec.2017.01.002

7. Tagliaferri TL, Jansen M, Horz HP. Fighting pathogenic bacteria on two fronts: phages and antibiotics as combined strategy. Front Cell Infect Microbiol. 2019;9:22. https://doi.org/10.3389/fcimb.2019.00022

8. Łusiak-Szelachowska M, Weber-Dąbrowska B, Górski A. Bacteriophages and lysins in biofilm control. Virol Sin. 2020;35(2):125–33. https://doi.org/10.1007/s12250-019-00192-3

9. Suzuki I, Shimizu T, Senpuku H. Role of SCFAs for fimbrillin-dependent biofilm formation of Actinomyces oris. Microorganisms. 2018;6(4):114. https://doi.org/10.3390/microorganisms6040114

10. Mishra A, Wu C, Yang J, Cisar JO, Das A, Ton-That H. The Actinomyces oris type 2 fimbrial shaft FimA mediates co-aggregation with oral streptococci, adherence to red blood cells and biofilm development. Mol Microbiol. 2010;77(4):841–54. https://doi.org/10.1111/j.1365-2958.2010.07252.x

11. Sanchez BC, Chang C, Wu C, Tran B, Ton-That H. Electron transport chain is biochemically linked to pilus assembly required for polymicrobial interactions and biofilm formation in the gram-positive actinobacterium Actinomyces oris. mBio. 2017;8(3):e00399-17. https://doi.org/10.1128/mBio.00399-17

12. Kachlany SC. Aggregatibacter actinomycetemcomitans leukotoxin: from threat to therapy. J Dent Res. 2010;89(6):561–70. https://doi.org/10.1177/0022034510363682

13. Danforth DR, Tang-Siegel G, Ruiz T, Mintz KP. A nonfimbrial adhesin of Aggregatibacter actinomycetemcomitans mediates biofilm biogenesis. Infect Immun. 2018;87(1):e00704-18. https://doi.org/10.1128/IAI.00704-18

14. Nambu T, Mashimo C, Maruyama H, Taniguchi M, Huang Y, Takigawa H, et al. Complete genome sequence of Actinomyces oris strain K20, isolated from an oral apical lesion. Microbiol Resour Announc. 2022;11(8):e0054122. https://doi.org/10.1128/mra.00541-22

15. Phichaphop C, Apiwattanakul N, Wanitkun S, Boonsathorn S. Bacterial endocarditis caused by Actinomyces oris: first reported case and literature review. J Investig Med High Impact Case Rep. 2020;8:2324709620910645. https://doi.org/10.1177/2324709620910645

16. Tang-Siegel GG, Chen C, Mintz KP. Increased sensitivity of Aggregatibacter actinomycetemcomitans to human serum is mediated by induction of a bacteriophage. Mol Oral Microbiol. 2023:38(1):58–70. https://doi.org/10.1111/omi.12378

17. Hbibi A, Bouziane A, Lyoussi B, Zouhdi M, Benazza D. Aggregatibacter actinomycetemcomitans: from basic to advanced research. Adv Exp Med Biol. 2022;1373:45–67. https://doi.org/10.1007/978-3-030-96881-6_3

18. Gholizadeh P, Pormohammad A, Eslami H, Shokouhi B, Fakhrzadeh V, Kafil HS. Oral pathogenesis of Aggregatibacter actinomycetemcomitans. Microb Pathog. 2017;113:303–11. https://doi.org/10.1016/j.micpath.2017.11.001

19. Romanovа NA, Feoktistovа NA, Zolotukhin SN, Vasilyev DA, Aleshkin AV. Comparative efficacy of isolation methods for phages of Bacillus megaterium. Vestnik Veterinarii. 2013;(1):26–7 (In Russ.). EDN: PLHIWV

20. Luria S, Darnell J. General virology. Moscow: Mir; 1970 (In Russ.).

21. Kropinski AM, Prangishvili D, Lavigne R. Position paper: the creation of a rational scheme for the nomenclature of viruses of Bacteria and Archaea. Environ Microbiol. 2009;11(11):2775–7. https://doi.org/10.1111/j.1462-2920.2009.01970.x

22. Adams M. Bacteriophages. Moscow: Medgiz; 1961 (In Russ.).

23. Goldfarb DM. Bacteriophagy. Moscow: Medgiz; 1961 (In Russ.).

24. Peng SY, Chen LK, Wu WJ, Paramita P, Yang PW, Li YZ, Lai MJ, Chang KC. Isolation and characterization of a new phage infecting Elizabethkingia anophelis and evaluation of its therapeutic efficacy in vitro and in vivo. Front Microbiol. 2020;11:728. https://doi.org/10.3389/fmicb.2020.00728

25. Suldina EV. Development of quick scheme identification of Listeria using phage biopreparation L.m 4УЛГАУ. Vestnik of Ulyanovsk State Agricultural Academy. 2020;4(52):191–7 (In Russ.). https://doi.org/10.18286/1816-4501-2020-4-191-197

26. Orlovskaya PI, Girilovich NI, Pilipchuk TA, Mandrik-Litvinkovich MN, Kolomiets EI. Effect of physico-chemical factors on survival of bacteriophages of phytopathogenic bacteria. In: Kolomiets, ed. Microbial biotechnologies: fundamental and applied aspects. Minsk: Belaruskaya navuka; 2021. P. 204–11 (In Russ.). https://doi.org/10.47612/2226-3136-2021-13-204-211

27. Kochetova TA, Yuskevich VV, Sadykova GT, Popova VM. Isolation and study of biological properties of Bordetella bronchiseptica-specific bacteriophages. Veterinary Science Today. 2022;11(3):273–9 (In Russ.). https://doi.org/10.29326/2304-196X-2022-11-3-273-279

28. Stevens RH, Preus HR, Dokko B, Russell DT, Furgang D, Schreiner HC, et al. Prevalence and distribution of bacteriophage phi Aa DNA in strains of Actinobacillus actinomycetemcomitans. FEMS Microbiol Lett. 1994;119(3):329–37. https://doi.org/10.1111/j.1574-6968.1994.tb06909.x

29. Loftus A, Delisle AL. Inducible bacteriophages of Actinobacillus actinomycetemcomitans. Curr Microbiol. 1995;30(5):317–21. https://doi.org/10.1007/BF00295508

30. Dige I, Raarup MK, Nyengaard JR, Kilian M, Nyvad B. Actinomyces naeslundii in initial dental biofilm formation. Microbiology (Reading). 2009;155(Pt 7):2116–26. https://doi.org/10.1099/mic.0.027706-0

31. Arai T, Ochiai K, Senpuku H. Actinomyces naeslundii GroEL-dependent initial attachment and biofilm formation in a flow cell system. J Microbiol Methods. 2015;109:160–6. https://doi.org/10.1016/j.mimet.2014.12.021


Supplementary files

Review

For citations:


Kochetova T.A., Yuskevich V.V., Zurabov F.M., Sadykova G.T., Medvedev P.V., Popova V.M. Isolation of novel Actinomyces oris and Aggregatibacter actinomycetemcomitans bacteriophages and study of their biological characteristics in vitro. Biological Products. Prevention, Diagnosis, Treatment. 2024;24(1):103-116. (In Russ.) https://doi.org/10.30895/2221-996X-2024-24-1-103-116

Views: 1902


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2221-996X (Print)
ISSN 2619-1156 (Online)