Preclinical studies of antiviral activity of the RPH-137 fusion protein and molnupiravir against COVID-19
https://doi.org/10.30895/2221-996X-2022-22-4-414-434
Abstract
Finding effective and safe medicines to fight SARS-CoV-2 infection is an urgent task. RPH-137 is an original trap fusion protein against SARS-CoV-2 virus. It comprises the angiotensin-converting enzyme type 2 extracellular domain and the human IgG1 Fc fragment.
The aim of the study was to carry out a preclinical evaluation of the efficacy of RPH-137 and molnupiravir against SARS-CoV-2 infection.
Materials and methods: the authors analysed RPH-137 expressed in a stable CHO cell line and molnupiravir used as an active pharmaceutical ingredient. Drug-mediated inhibition of virus-induced cytotoxicity was assessed in Vero cell culture. In vivo efficacy assessments were performed in Syrian hamsters. The animals were infected intranasally with SARS-CoV-2 (PIK35 clinical isolate) in the dose of 5 log TCID50. The authors evaluated body weight measurements, lung–body weight ratios, and lung histopathology findings and determined viral RNA levels in oropharyngeal swabs by RT-PCR using the amplification cycle threshold (Ct). The statistical analyses involved one- and two-way ANOVA, Student's t-test, and Mann–Whitney test.
Results: RPH-137 and molnupiravir inhibited the cytopathic effect of SARS-CoV-2 in Vero cells; the EC50 values of RPH-137 amounted to 4.69 μg/mL (21.3 nM) and 16.24 μg/mL (73.8 nM) for 50 TCID50 and 200 TCID50, respectively, whereas the EC50 values of molnupiravir were 0.63 μg/mL (1900 nM) for both doses. Intramuscular RPH-137 (30 and 80 mg/kg) had no effect on the infection process in Syrian hamsters. The comparison with the challenge control group showed that intraperitoneal RPH-137 (100 mg/kg) had statistically significant effects on a number of parameters, including a 27% reduction in inflammation and a 30% reduction in the total lesion area of the lungs by Day 7. Intragastric molnupiravir (300 mg/kg twice daily) significantly inhibited SARS-CoV-2 infection.
Conclusions: both RPH-137 and molnupiravir inhibited the cytopathic effect of SARS-CoV-2 in Vero cells. In Syrian hamsters, molnupiravir demonstrated a more pronounced inhibition of SARS-CoV-2 infection than RPH-137. However, RPH-137 had statistically significant effects on a range of parameters. This offers additional perspectives for further research.
About the Authors
E. V. ShipaevaRussian Federation
Elena V. Shipaeva, Cand. Sci. (Med.)
111/1 Leninsky Ave, Moscow 119421
O. V. Filon
Russian Federation
Olga V. Filon
111/1 Leninsky Ave, Moscow 119421
A. V. Zintchenko
Russian Federation
Arkadi V. Zintchenko, Ph. D.
111/1 Leninsky Ave, Moscow 119421
G. A. Shipunov
Russian Federation
Georgy A. Shipunov
111/1 Leninsky Ave, Moscow 119421
A. A. Dmitrieva
Russian Federation
Anastasia A. Dmitrieva
111/1 Leninsky Ave, Moscow 119421
M. S. Lemak
Russian Federation
Maria S. Lemak, Cand. Sci. (Biol.)
111/1 Leninsky Ave, Moscow 119421
S. A. Grishin
Russian Federation
Sergey A. Grishin, Cand. Sci. (Med.)
111/1 Leninsky Ave, Moscow 119421
E. I. Trofimets
Russian Federation
Ekaterina I. Trofimets
3/245 Zavodskaya St., Kuzmolovsky urban-type settlement, Vsevolozhsky district, Leningrad region 188663
K. L. Kryshen
Russian Federation
Kirill L. Kryshen, Cand. Sci. (Biol.)
3/245 Zavodskaya St., Kuzmolovsky urban-type settlement, Vsevolozhsky district, Leningrad region 188663
L. I. Kozlovskaya
Russian Federation
Liubov I. Kozlovskaya, Cand. Sci. (Biol.)
8/1 Village of the Institute of Poliomyelitis, Moskovsky settlement, Moscow 108819
A. S. Lunin
Russian Federation
Aleksandr S. Lunin
8/1 Village of the Institute of Poliomyelitis, Moskovsky settlement, Moscow 108819
V. D. Apolokhov
Russian Federation
Vasiliy D. Apolokhov
8/1 Village of the Institute of Poliomyelitis, Moskovsky settlement, Moscow 108819
S. F. Barbashov
United States
Sergey F. Barbashov, Cand. Sci. (Biol.)
505 Coast Boulevard South, Suite 102, La Jolla, CA 92037
Ya. V. Lavrovsky
United States
Yan V. Lavrovsky, Cand. Sci. (Biol.)
505 Coast Boulevard South, Suite 102, La Jolla, CA 92037
M. Yu. Samsonov
Russian Federation
Mikhail Yu. Samsonov, Cand. Sci. (Med.)
111/1 Leninsky Ave, Moscow 119421
References
1. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–62. https://doi.org/10.1016/S0140-6736(20)30566-3
2. Cheng ZJ, Shan J. 2019 novel coronavirus: where we are and what we know. Infection. 2020;48(2):155–63. https://doi.org/10.1007/s15010-020-01401-y
3. Glasgow A, Glasgow J, Limonta D, Solomon P, Lui I, Zhang Y, et al. Engineered ACE2 receptor traps potently neutralize SARS-CoV-2. Proc Natl Acad Sci USA. 2020;117(45):28046–55. https://doi.org/10.1073/pnas.2016093117
4. Wysocki J, Ye M, Hassler L, Gupta AK, Wang Y, Nicoleascu V, et al. A novel soluble ACE2 variant with prolonged duration of action neutralizes SARS-CoV-2 infection in human kidney organoids. J Am Soc Nephrol. 2021;32(4):795–803. https://doi.org/10.1681/asn.2020101537
5. Tanaka S, Nelson G, Olson CA, Buzko O, Higashide W, Shin A, et al. An ACE2 triple decoy that neutralizes SARS-CoV-2 shows enhanced affinity for virus variants. Sci Rep. 2021;11(1):12740. https://doi.org/10.1038/s41598-021-91809-9
6. Bernal AJ, Gomes da Silva MM, Musungaie DB, Kovalchuk E, Gonzalez A, Reyes VD, et al. Molnupiravir for oral treatment of Covid-19 in nonhospitalized patients. N Engl J Med. 2022;386(6):509–20. https://doi.org/10.1056/NEJMoa2116044
7. Fischer WA, Eron Jr JJ, Holman W, Cohen MS, Fang L, Szewczyk LJ, et al. A phase 2a clinical trial of molnupiravir in patients with COVID-19 shows accelerated SARS-CoV-2 RNA clearance and elimination of infectious virus. Sci Transl Med. 2022;14(628):eabl7430.https://doi.org/10.1126/scitranslmed.abl7430
8. Rosenke K, Hansen F, Schwarz B, Feldmann F, Haddock E, Rosenke R, et al. Orally delivered MK-4482 inhibits SARS-CoV-2 replication in the Syrian hamster model. Nat Commun. 2021;12(1):2295. https://doi.org/10.1038/s41467-021-22580-8
9. Abdelnabi R, Foo CS, Kaptein SJF, Zhang X, Dan Do TN, Langendries L, et al. The combined treatment of Molnupiravir and Favipiravir results in a potentiation of antiviral efficacy in a SARS-CoV-2 hamster infection model. eBioMedicine. 2021;72:103595.https://doi.org/10.1016/j.ebiom.2021.103595
10. Bai Y, Shen M, Zhang L. Antiviral efficacy of Molnupiravir for COVID-19 treatment. Viruses. 2022;14(4):763. https://doi.org/10.3390/v14040763
11. Desmyter J, Melnick JL, Rawls WE. Defectiveness of interferon production and of rubella virus interference in a line of African green monkey kidney cells (Vero). J Virol. 1968;2(10):955–61. https://doi.org/10.1128/jvi.2.10.955-961.1968
12. Emeny JM, Morgan MJ. Regulation of the interferon system: evidence that Vero cells have a genetic defect in interferon production. J Gen Virol. 1979;43(1):247–52. https://doi.org/10.1099/0022-1317-43-1-247
13. Johansen MD, Irving A, Montagutelli X, Tate MD, Rudloff I, Nold MF, et al. Animal and translational models of SARS-CoV-2 infection and COVID-19. Mucosal Immunol. 2020;13(6):877–91. https://doi.org/10.1038/s41385-020-00340-z
14. Da Costa CBP, De Menezes Cruz AC, Penha JCQ, Castro HC, Da Cunha LER, Ratcliffe NA, et al. Using in vivo animal models for studying SARS-CoV-2. Expert Opin Drug Discov. 2022;17(2):121–37. https://doi.org/10.1080/17460441.2022.1995352
15. Cao Y, Sun Y, Tian X, Bai Z, Gong Y, Qi J, et al. Analysis of ACE2 gene-encoded proteins across mammalian species. Front Vet Sci. 2020;7:457. https://doi.org/10.3389/fvets.2020.00457
16. Imai M, Iwatsuki-Horimoto K, Hatta M, Loeber S, Halfmann PJ, Nakajima N, et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc Natl Acad Sci USA. 2020;117(28):16587–95. https://doi.org/10.1073/pnas.2009799117
17. Kozlovskaya L, Piniaeva A, Ignatyev G, Selivanov A, Shishova A, Kovpak A, et al. Isolation and phylogenetic analysis of SARS-CoV-2 variants collected in Russia during the COVID-19 outbreak. Int J Infect Dis. 2020;99:40–6. https://doi.org/10.1016/j.ijid.2020.07.024
18. Lavrovsky Y, Chestukhin A, Barbashov S, Repik A, Samsonov M, Ignatiev V. ACE2-derived composition and use thereof. WO 2021/202427 A2; 2021.
19. Englebienne P, Van Hoonacker A, Verhas M. Surface plasmon resonance: principles, methods and applications in biomedical sciences. J Spectrosc. 2003;17:ID 372913. https://doi.org/10.1155/2003/372913
20. Sheahan TP, Sims AC, Zhou S, Graham RL, Pruijssers AJ, Agostini ML, et al. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci Transl Med. 2020;12(541):eabb5883.https://doi.org/10.1126/scitranslmed.abb5883
21. Kozlovskaya LI, Volok VP, Shtro AA, Nikolaeva YV, Chistov AA, Matyugina ES, et al. Phenoxazine nucleoside derivatives with a multiple activity against RNA and DNA viruses. Eur J Med Chem. 2021;220:113467. https://doi.org/10.1016/j.ejmech.2021.113467
22. Kärber G. Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Naunyn-Schmiedebergs Arch Exp Pathol. Pharmakol. 1931;162(4):480–3. https://doi.org/10.1007/BF01863914
23. Altman DG, Bland JM. How to randomise. BMJ. 1999;319(7211):703–4. https://doi.org/10.1136/bmj.319.7211.703
24. Osterrieder N, Bertzbach LD, Dietert K, Abdelgawad A, Vladimirova D, Kunec D, et al. Age-dependent progression of SARS-CoV-2 infection in Syrian hamsters. Viruses. 2020;12(7):779. https://doi.org/10.3390/v12070779
25. Montgomery DC. Design and analysis of experiments. 8th ed. Hoboken: John Wiley & Sons; 2017.
26. Sia SF, Yan L-M, Chin AWH, Fung K, Choy K-T, Wong AYL, et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature. 2020;583(7818):834–8. https://doi.org/10.1038/s41586-020-2342-5
27. Ferrari M, Mekkaoui L, Ilca FT, Akbar Z, Bughda R, Lamb K, et al. Characterization of a novel ACE2-based therapeutic with enhanced rather than reduced activity against SARS-CoV-2 variants. J Virol. 2021;95(19):e0068521. https://doi.org/10.1128/JVI.00685-21
28. Cao X, Maruyama J, Zhou H, Kerwin L, Sattler R, Manning JT, et al. Discovery and development of human SARS-CoV-2 neutralizing antibodies using an unbiased phage display library approach. bioRxiv. 2020. http://doi.org/10.1101/2020.09.27.316174
29. Saravanan UB, Namachivayam M, Jeewon R, Huang JD, Durairajan SSK. Animal models for SARS-CoV-2 and SARS-CoV-1 pathogenesis, transmission and therapeutic evaluation. World J Virol. 2022;11(1):40–56. https://doi.org/10.5501/wjv.v11.i1.40
30. Tian L, Pang Z, Li M, Lou F, An X, Zhu S, et al. Molnupiravir and its antiviral activity against -COVID-19. Front Immunol. 2022;13:855496. https://doi.org/10.3389/fimmu.2022.855496
31. Yoon J-J, Toots M, Lee S, Lee M-E, Ludeke B, Luczo JM, et al. Orally efficacious broad-spectrum ribonucleoside analog inhibitor of influenza and respiratory syncytial viruses. Antimicrob Agents Chemother. 2018;62(8):e00766-18. https://doi.org/10.1128/AAC.00766-18
32. Baum A, Ajithdoss D, Copin R, Zhou A, Lanza K, Negron N, et al. REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters. Science. 2020;370(6520):1110–5. https://doi.org/10.1126/science.abe2402
33. Higuchi Y, Suzuki T, Arimori T, Ikemura N, Mihara E, Kirita Y, et al. High affinity modified ACE2 receptors protect from SARS-CoV-2 infection in hamsters. bioRxiv. 2020. 09.16.299891. https://doi.org/10.1101/2020.09.16.299891
34. Rogers TF, Zhao F, Huang D, Beutler N, Burns A, He W-T, et al. Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Science. 2020;369(6506):956–63. https://doi.org/10.1126/science.abc7520
35. Bi Z, Hong W, Yang J, Lu S, Peng X. Animal models for SARS-CoV-2 infection and pathology. MedComm. 2021;2(4):548–68. https://doi.org/10.1002/mco2.98
36. Kim Y-I, Kim S-G, Kim S-M, Kim E-H, Park S-J, Yu K-M, et al. Infection and rapid transmission of SARS-CoV-2 in ferrets. Cell Host Microbe. 2020;27(5):704–9.e2. https://doi.org/10.1016/j.chom.2020.03.023
37. Bao L, Deng W, Huang B, Gao H, Liu J, Ren L, et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature. 2020;583(7818):830–3. https://doi.org/10.1038/s41586-020-2312-y
38. Sun SH, Chen Q, Gu HJ, Yang G, Wang YX, Huang XY, et al. A mouse model of SARS-CoV-2 infection and pathogenesis. Cell Host Microbe. 2020;28(1):124–33.e4. https://doi.org/10.1016/j.chom.2020.05.020
39. Soldatov VO, Kubekina MV, Silaeva YY, Bruter AV, Deykin AV. On the way from SARS-CoV-sensitive mice to murine COVID-19 model. Res Results Pharmacol. 2020;6(2):1–7. https://doi.org/10.3897/rrpharmacology.6.53633
40. Shi J, Wen Z, Zhong G, Yang H, Wang C, Huang B, et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science. 2020;368(6494):1016–20. https://doi.org/10.1126/science.abb7015
41. Richard M, Kok A, de Meulder D, Bestebroer TM, Lamers MM, Okba NMA, et al. SARS-CoV-2 is transmitted via contact and via the air between ferrets. Nat Commun. 2020;11(1):3496. https://doi.org/10.1038/s41467-020-17367-2
42. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–3. https://doi.org/10.1038/s41586-020-2012-7
43. Li W, Greenough TC, Moore MJ, Vasilieva N, Somasundaran M, Sullivan JL, et al. Efficient replication of severe acute respiratory syndrome coronavirus in mouse cells is limited by murine angiotensin-converting enzyme 2. J Virol. 2004;78(20):11429–33.https://doi.org/10.1128/jvi.78.20.11429-11433.2004
44. Clever S, Volz A. Mouse models in COVID-19 research: analyzing the adaptive immune response. Med Microbiol Immunol. 2022:1–19. https://doi.org/10.1007/s00430-022-00735-8
45. Chan JF, Zhang AJ, Yuan S, Poon VK, Chan CC, Lee AC, et al. Simulation of the clinical and pathological manifestations of coronavirus disease 2019 (COVID-19) in a golden Syrian hamster model: implications for disease pathogenesis and transmissibility. Clin Infect Dis.2020;71(9):2428–46. https://doi.org/10.1093/cid/ciaa325
46. Muñoz-Fontela C, Widerspick L, Albrecht RA, Beer M, Carroll MW, de Wit E, et al. Advances and gaps in SARS-CoV-2 infection models. PLoS Pathog. 2022;18(1):e1010161. https://doi.org/10.1371/journal.ppat.1010161
47. Deykin AV, Shcheblykina OV, Povetka EE, Golubinskaya PA, Pokrovsky VM, Korokina LV, et al. Genetically modified animals for use in biopharmacology: from research to production. Res Results Pharmacol. 2021;7(4):11–27. https://doi.org/10.3897/rrpharmacology.7.76685
48. Winkler ES, Bailey AL, Kafai NM, Nair S, McCune BT, Yu J, et al. SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nat Immunol. 2020;21(11):1327–35. https://doi.org/10.1038/s41590-020-0778-2
Supplementary files
Review
For citations:
Shipaeva E.V., Filon O.V., Zintchenko A.V., Shipunov G.A., Dmitrieva A.A., Lemak M.S., Grishin S.A., Trofimets E.I., Kryshen K.L., Kozlovskaya L.I., Lunin A.S., Apolokhov V.D., Barbashov S.F., Lavrovsky Ya.V., Samsonov M.Yu. Preclinical studies of antiviral activity of the RPH-137 fusion protein and molnupiravir against COVID-19. Biological Products. Prevention, Diagnosis, Treatment. 2022;22(4):414-434. (In Russ.) https://doi.org/10.30895/2221-996X-2022-22-4-414-434