DPT vaccine evolution: Formulation differences, standardisation issues, and development prospects
https://doi.org/10.30895/2221-996X-2025-25-1-83-96
Abstract
INTRODUCTION. Currently, diphtheria, pertussis, and tetanus (DTP) vaccines are available in tetra-, penta-, and hexavalent combinations with inactivated poliomyelitis, Haemophilus influenzae, and hepatitis B components. Despite the widespread introduction of DTP vaccines in national vaccination programmes, concerns remain about the immunogenicity and safety of the pertussis component, the standardisation of vaccine production and quality control methods, and the inclusion of DTP vaccines in national routine vaccination schedules.
AIM. This study aimed to provide an updated overview of DTP-based combined vaccines and analyse the current challenges associated with their use and quality improvement.
DISCUSSION. DTP vaccines hold a central place in national routine vaccination schedules. The development of numerous safe and effective DTP vaccines has contributed to the formulation of DTP-based combined vaccines that include additional components and are suitable for infants. The addition of inactivated components against poliomyelitis, H. influenzae, and hepatitis B has facilitated the introduction of DTP-based combined vaccines into the recommended vaccination programmes and has reduced the number of injections received by a child. However, DTP-based combined vaccines from different manufacturers differ in the composition and quantity of antigens and in quality control methods. The key differences in the composition of these vaccines are due to the inclusion of either whole-cell or acellular pertussis. The current global rise in the incidence of pertussis is associated with the widespread use of acellular vaccines, which do not induce long-term immunity. This review considers the mutual influence of antigens in relation to vaccine efficacy and safety and addresses the standardisation issues associated with antigen production and quality control. The article analyses data on various DTP-based combined vaccines and the quantity of antigens in them. The review discusses promising areas for further improvement of the quality and effectiveness of DTP-based combined vaccines.
CONCLUSIONS. Addressing unresolved standardisation issues in the production and quality control of DTP-based combined vaccines, which (along with country-specific licensing requirements) limit the international exchange of vaccines, can facilitate international recognition and ensure a high level of potency and safety of DTP-based combined vaccines.
Keywords
About the Authors
E. I. KomarovskayaRussian Federation
Elena I. Komarovskaya
8/2 Petrovsky Blvd, Moscow 127051
O. V. Proskurina
Russian Federation
Olga V. Proskurina
8/2 Petrovsky Blvd, Moscow 127051
A. A. Soldatov
Russian Federation
Aleksandr A. Soldatov, Dr. Sci. (Med.)
8/2 Petrovsky Blvd, Moscow 127051
References
1. Оффит ПА. Смертельно опасный выбор. М.: Corpus; 2022. Offit PA. Deadly Choices. Moscow: Corpus; 2022 (In Russ.).
2. Szwejser-Zawislak E, Wilk MM, Piszczek P, Krawczyk J, Wilczyńska D, Hozbor D. Evaluation of whole-cell and acellular pertussis vaccines in the context of long-term herd immunity. Vaccines (Basel). 2023;11(1):1. https://doi.org/10.3390/vaccines11010001
3. Eberhardt C, Siegrist C. What is wrong with pertussis vaccine immunity? Inducing and recalling vaccine-specific immunity. Cold Spring Harb Perspect Biol. 2017;9(12):a029629. https://doi.org/10.1101/cshperspect.a029629
4. Prevost B, Nathan N, Corvol H. Letter to the editor: Is the acellular pertussis vaccine driving the increase in severe whooping cough cases in children? Euro Surveill. 2024;29(37):2400574. https://doi.org/10.2807/1560-7917.es.2024.29.37.2400574
5. Klein NP. Licensed pertussis vaccines in the United States. Hum Vaccin Immunother. 2014;10(9):2684–90. https://doi.org/10.4161/hv.29576
6. Plotkin SL, Plotkin SA. A short history of vaccination. In: Plotkin SA, Orenstein WA, Offit PA, Edwards KM, eds. Plotkin’s Vaccines. 7th ed. Philadelphia PA: Elsevier; 2018. Р. 1–15.
7. Tejpratap SP, Wharton T, Wharton M. Diphtheria toxoid. In: Plotkin SA, Orenstein WA, Offit PA, Edwards KM, eds. Plotkin’s Vaccines. 7th ed. Philadelphia PA: Elsevier; 2018. P. 261–75.
8. Stuart G. Diphtheria incidence in European countries. Br Med J. 1945;2(4426):613–5. https://doi.org/10.1136/bmj.2.4426.613
9. Kaufmann SH. Remembering Emil von Behring: From tetanus treatment to antibody cooperation with phagocytes. mBio. 2017;8(1):e00117-17. https://doi.org/10.1128/mBio.00117-17
10. Wever PC, van Bergen L. Prevention of tetanus during the First World War. Med Humanit. 2012;38(2):78–82. https://doi.org/10.1136/medhum-2011-010157
11. Edwards KM, Decker MD. Pertussis vaccines. In: Plotkin SA, Orenstein WA, Offit PA, Edwards KM, eds. Plotkin’s Vaccines. 7th ed. Philadelphia PA: Elsevier; 2018. P. 711–61.
12. Kuchar E, Karlikowska-Skwarnik M, Han S, Nitsch-Osuch A. Pertussis: History of the disease and current prevention failure. Adv Exp Med Biol. 2016;934:77–82. https://doi.org/10.1007/5584_2016_21
13. Cherry JD. The 112-year odyssey of pertussis and pertussis vaccines — mistakes made and implications for the future. J Pediatric Infect Dis Soc. 2019;8(4):334–41. https://doi.org/10.1093/jpids/piz005
14. Marks HM. The Kendrick-Eldering-(Frost) pertussis vaccine field trial. J R Soc Med. 2007;100(5):242–7. https://doi.org/10.1177/014107680710000516
15. Shapiro-Shapin CG. Pearl Kendrick, Grace Eldering, and the pertussis vaccine. Emerg Infect Dis. 2010;16(8):1273–8. https://doi.org/10.3201/eid1608.100288
16. Kendrick P, Eldering G. Progress report on pertussis immunization. Am J Public Health Nations Health. 1936;26(1):8–12. https://doi.org/10.2105/ajph.26.1.8
17. Gangarosa EJ, Galazka AM, Wolfe CR, Phillips LM, Gangarosa RE, Miller E, Chen RT. Impact of anti-vaccine movements on pertussis control: The untold story. Lancet. 1998;351(9099):356–61. https://doi.org/10.1016/s0140-6736(97)04334-1
18. Prygiel M, Mosiej E, Goґrska P, Zasada A. Diphtheria–tetanus–pertussis vaccine: Past, current & future. Future Microbiol. 2022;17:185–97. https://doi.org/10.2217/fmb-2021-0167
19. Sato Y, Kimura M, Fukumi H. Development of a pertussis component vaccine in Japan. Lancet. 1984;1(8369):122–6. https://doi.org/10.1016/s0140-6736(84)90061-8
20. Greco D, Salmaso S, Mastrantonio P, Giuliano M, Tozzi AE, Anemona A, et al. A controlled trial of two acellular vaccines and one whole-cell vaccine against pertussis. Progetto Pertosse Working Group. N Engl J Med. 1996;334(6):341–8. https://doi.org/10.1056/NEJM199602083340601
21. Komarovskaya EI, Perelygyna OV. Current state of methods for control the safety and potency of diphtheria toxoid and tetanus toxoid in combined vaccines. Epidemiology and Vaccinal Prevention. 2022;21(3):96–106 (In Russ.). https://doi.org/10.31631/2073-3046-2022-21-3-96-106
22. Prygiel M, Mosiej E, Wdowiak K, Rabczenko D, Zasada AA. Adjuvant effect of whole-cell pertussis component on tetanus toxoid potency in murine model. Biomedicines. 2023;11(7):1795. https://doi.org/10.3390/biomedicines1107179
23. Perelygina OV, Alekseeva IA. Safety of combination vaccines with whole cell pertussis component. Epidemiology and Vaccinal Prevention. 2016;15(6):62–9 (In Russ.). https://doi.org/10.31631/2073-3046-2016-15-6-62-69
24. Alekseeva IA, Chuprinina RP, Borisova VN. Comparative analysis of safety and effectiveness of domestic and foreign complex vaccines containing whole-cell pertussis vaccine. Epidemiology and Vaccine Prevention. 2012;(3):48–54 (In Russ.). EDN: OZINNB
25. Skibinski DA, Baudner BC, Singh M, O’Hagan DT. Combination vaccines. J Glob Infect Dis. 2011;3(1):63–72. https://doi.org/10.4103/0974-777X.77298
26. Shamsheva OV. Evolution of the national vaccination calendar. Results and prospects. Children Infections. 2022;21(1):5–15 (In Russ.). https://doi.org/10.22627/2072-8107-2022-21-1-5-15
27. Namazova-Baranova LS, Fedoseenko MV, Baranov AA. New horizons of National Immunization Calendar. Current Pediatrics. 2019;18(1):13–30 (In Russ.). https://doi.org/10.15690/vsp.v18i1.1988
28. Kurosky SK, Davis KL, Krishnarajah G. Effect of combination vaccines on completion and compliance of childhood vaccinations in the United States. Hum Vaccin Immunother. 2017;13(11):2494–502. https://doi.org/10.1080/21645515.2017.1362515
29. Marshall GS, Petigara T, Liu Z, Wolfson L, Johnson D, Goveia MG, et al. Timing of monovalent vaccine administration in infants receiving DTaP-based combination vaccines in the United States. Pediatr Infect Dis J. 2022;41(9):775–81. https://doi.org/10.1097/INF.0000000000003609
30. Marshall GS, Happe LE, Lunacsek OE, Szymanski MD, Woods CR, Zahn M, et al. Use of combination vaccines is associated with improved coverage rates. Pediatr Infect Dis J. 2007;26(6):496–500. https://doi.org/10.1097/INF.0b013e31805d7f17
31. Gavrilova NA, Olefir YuV, Merkulov VA, Bondarev VP, Rychikhina EM, Obukhov YuI. Vaccine interchangeability: Problems and prospects. BIOpreparations. Prevention, Diagnosis, Treatment. 2021;21(3):142–57 (In Russ.). https://doi.org/10.30895/2221-996X-2021-21-3-142-157
32. Bandiera S, Lebas A, Canizares-Martinello L, Guinchard F, Lyonnais C, Perrin S, et al. A single immunogenicity assay for testing potency of combination DTaP vaccines: Simultaneous quantitation of anti-DT, anti-TT, anti-PTxd and anti-FHA antibodies in Guinea-pig serum with a Luminex®-xMAP® bead-based serological assay. Biologicals. 2019;61:15–21. https://doi.org/10.1016/j.biologicals.2019.08.002
33. Olin P, Gustafsson L, Barreto L, Hessel L, Mast TC, Rie AV, et al. Declining pertussis incidence in Sweden following the introduction of acellular pertussis vaccine. Vaccine. 2003;21(17–18):2015–21. https://doi.org/10.1016/s0264-410x(02)00777-6
34. Quinn HE, Snelling TL, Macartney KK, McIntyre PB. Duration of protection after first dose of acellular pertussis vaccine in infants. Pediatrics. 2014;133(3):e513–9. https://doi.org/10.1542/peds.2013-3181
35. Eberhardt C, Siegrist C. What is wrong with pertussis vaccine immunity? Inducing and recalling vaccine-specific immunity. Cold Spring Harb Perspect Biol. 2017;9(12):a029629. https://doi.org/10.1101/cshperspect.a029629
36. van der Lee S, Hendrikx LH, Sanders EAM, Berbers GAM, Buisman AM. Whole-cell or acellular pertussis primary immunizations in infancy determines adolescent cellular immune profiles. Front Immunol. 2018;9:51. https://doi.org/10.3389/fimmu.2018.00051
37. Basov AA, Vysochanskaya SO, Tsvirkun OV, Belova TR, Aduguzelov SE, Zhernov YuV, et al. Criteria for assessing the epidemiological situation of pertussis in Russian Federation. Epidemiology and Vaccinal Prevention. 2024;23(1):4–13 (In Russ.). https://doi.org/10.31631/2073-3046-2024-23-1-4-13
38. Libster R, Edwards KM. Re-emergence of pertussis: What are the solutions? Expert Rev Vaccines. 2012;11(11):1331–46. https://doi.org/10.1586/erv.12.118
39. Meade BD, Plotkin SA, Locht C. Possible options for new pertussis vaccines. J Infect Dis. 2014;209(S1):24–7. https://doi.org/10.1093/infdis/jit531
40. Locht C, Mielcarek N. New pertussis vaccination approaches: Enroute to protect newborns? FEMS Immunol Med Microbiol. 2012;66(2):121–33. https://doi.org/10.1111/j.1574-695X.2012.00988.x
41. Polewicz M, Gracia A, Garlapati S, van Kessel J, Strom S, Halperin SA, et al. Novel vaccine formulations against pertussis offer earlier onset of immunity and provide protection in the presence of maternal antibodies. Vaccine. 2013;31(31):3148–55. https://doi.org/10.1016/j.vaccine.2013.05.008
42. Djidaryan AA, Matua AZ, Medkova AYu, Semin EG, Sinyashina LN, Dyakov IN, et al. Safety and immunogenicity of live intranasal pertussis vaccine GamLPV in the experimental infant hamadryas baboon model. Journal of Microbiology, Epidemiology and Immunobiology. 2022;99(2):203–14 (In Russ.). https://doi.org/10.36233/0372-9311-190
43. Keech C, Miller VE, Rizzardi B, Hoyle Ch, Pryor MJ, Ferrand J, et al. Immunogenicity and safety of BPZE1, an intranasal live attenuated pertussis vaccine, versus tetanus– diphtheria–acellular pertussis vaccine: A randomised, doubleblind, phase 2b trial. Lancet. 2023;401(10379):843–55. https://doi.org/10.1016/S0140-6736(22)02644-7
44. Lin A, Apostolovic D, Jahnmatz M, Liang F, Ols S, Tecleab T, et al. Live attenuated pertussis vaccine BPZE1 induces a broad antibody response in humans. J Clin Invest. 2020;130(5):2332–46. https://doi.org/10.1172/JCI135020
45. Medkova AYu, Lidzhieva AA, Semin EG, Sinyashina LN, Sioundioukova RA, Dyakov IN, et al. A clinical study of the safety and tolerability of live nasal vaccines for the prevention of pertussis. Drug Development & Registration. 2021;10(1):114–9 (In Russ.). https://doi.org/10.33380/2305-2066-2021-10-1-114-119
46. Shmeleva EA, Vershinin AE, Andina SS. Metabiotic medicine of symbiotic corynebacteria: Prevention, treatment and immunological safety. Epidemiology and Vaccinal Prevention. 2019;18(4):59–66 (In Russ.). https://doi.org/10.31631/2073-3046-2019-18-4-59-66
47. Eremina OF, Yushchuk ND, Shmeleva EA. Diphtheriае тох+. The influence of diphtheria vaccine Codivac on sanation results and immune status of C. diphtheriae tox+ carriers. Epidemiology and Vaccination. 2007;(2):55–9 (In Russ.). EDN: HEPWNR
48. Shmeleva EA, Melekhova AV, Saphronova AV. Population and epidemiological aspects of carriage of toxigenic (Cd tox+) and non-toxigenic (Cd tox-) diphtheria corynebacteria. Epidemiology and Vaccinal Prevention. 2023;22(3):85–92 (In Russ.). https://doi.org/10.31631/2073-3046-2023-22-3-85-92
Supplementary files
![]() |
1. Table S1. Composition of combined DTaP vaccines | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(432KB)
|
Indexing metadata ▾ |
Review
For citations:
Komarovskaya E.I., Proskurina O.V., Soldatov A.A. DPT vaccine evolution: Formulation differences, standardisation issues, and development prospects. Biological Products. Prevention, Diagnosis, Treatment. 2025;25(1):83-96. (In Russ.) https://doi.org/10.30895/2221-996X-2025-25-1-83-96