Probiotic properties of an indigenous strain composition of Bifidobacterium bifidum ICIS-310 and Bifidobacterium longum ICIS-505 in vitro
https://doi.org/10.30895/2221-996X-2025-565
Abstract
INTRODUCTION. An active search for probiotic strains of microorganisms, particularly indigenous bifidobacteria, is crucial for the development of therapeutic and prophylactic probiotics. Evaluating the probiotic potential of candidate strains requires their assessment for bacterial viability, antibiotic sensitivity, gastrointestinal stress tolerance, lysozyme resistance, and biofilm formation capacity.
AIM. This study aimed to characterise a composition of indigenous Biffdobacterium strains, B. biffdum ICIS-310 and B. longum ICIS-505, as a potential probiotic product.
MATERIALS AND METHODS. The study tested B. biffdum ICIS-310 and B. longum ICIS-505 for resistance to antibiotics, gastric acid, and bile. Mono- and co-cultures of B. biffdum ICIS-310 and B. longum ICIS-505 were tested for the number of viable cells during culture, antilysozyme activity (lysozyme resistance), and biofilm formation capacity. Antagonistic activity was tested against test strains of bacteria and fungi, including Candida albicans ATCC 24433, Proteus mirabilis ATCC 29906, Staphylococcus aureus ATCC 29213, Escherichia coli ATCC 25922, Shigella flexneri ATCC 12022, and Klebsiella pneumoniaе ICIS-278_PBV. The content of acetic acid in the culture medium was determined by gas–liquid chromatography.
RESULTS. The indigenous strains, B. biffdum ICIS-310 and B. longum ICIS-505, were selected according to the criteria of abundance, lysozyme resistance, and biofilm formation. These strains were found to lack pathogenicity genes, exhibit resistance to a number of antimicrobials (benzylpenicillin, streptomycin, and erythromycin), and remain viable in the presence of bile for 2 hours and in the presence of gastric acid for 30 minutes. The study demonstrated the biocompatibility of Biffdobacterium cultures, with the composition of B. biffdum ICIS-310 and B. longum ICIS-505 having a higher microbial cell count after 48 hours than monocultures. When co-cultured, B. biffdum ICIS-310 and B. longum ICIS-505 demonstrated a synergistic effect, resulting in increased lysozyme resistance (up to 2.2±0.30 μg/mL×OD450), biofilm formation (up to 0.89±0.20 OD630 units), and acetate production (up to 33.2 mM/L). The antagonistic activity against test strains was more pronounced in the co-culture than in the monocultures, with the respective growth inhibition zones of 30–36 mm and 18–24 mm.
CONCLUSIONS. Indigenous B. biffdum ICIS-310 and B. longum ICIS-505 have demonstrated resistance to antimicrobial agents, bile salts, and gastric acid. Co-culturing the strains has revealed a synergistic effect on their lysozyme resistance, biofilm formation capacity, and antagonistic activity. The strains of bifidobacteria and the composition thereof hold promise for the development of novel probiotics. The evaluation of lysozyme resistance and biofilm formation capacity, as indicators of the adaptive potential of the microbiota, may be recommended for the selection and testing of probiotic strains.
Keywords
About the Authors
N. B. PerunovaRussian Federation
Natalia B. Perunova, Dr. Sci. (Med.), Assoc. Prof., Prof. RAS
11 Pionerskaya St., Orenburg 460000;
54 Odesskaya St., Tyumen, 625023
O. V. Bukharin
Russian Federation
Oleg V. Bukharin, Dr. Sci. (Med.), Prof., Acad. RAS
11 Pionerskaya St., Orenburg 460000
E. V. Ivanova
Russian Federation
Elena V. Ivanova, Dr. Sci. (Med.), Assoc. Prof.
11 Pionerskaya St., Orenburg 460000
A. V. Bekpergenova
Russian Federation
Anastasia V. Bekpergenova, Cand. Sci. (Biol.)
11 Pionerskaya St., Orenburg 460000
T. A. Bondarenko
Russian Federation
Taisia A. Bondarenko, Cand. Sci. (Biol.)
11 Pionerskaya St., Orenburg 460000
References
1. Bukharin OV, Perunova NB, Ivanova EV. Biffdoflora in human associative symbiosis. Ekaterinburg: UrO RAN; 2014 (In Russ.).
2. Shenderov BA. Medical microbial ecology and functional nutrition. Moscow: GRANT; 1998 (In Russ.).
3. Bukharin OV, Ivanova EV, Perunova NB. Native strains of human intestinal bifidobacteria: Indigeneity through the prism of persistence. Bulletin of the Russian Academy of Sciences. 2023;93(11):1071–80 (In Russ.). https://doi.org/10.31857/S0869587323110026
4. Alessandri G, Ossiprandi MC, MacSharry J, van Sinderen D, Ventura M. Bifidobacterial dialogue with its human host and consequent modulation of the immune system. Front Immunol. 2019;10:2348. https://doi.org/10.3389/fimmu.2019.02348
5. Aw W, Fukuda S. Protective effects of bifidobacteria against enteropathogens. Microb Biotechnol. 2019;12(6):1097–100. https://doi.org/10.1111/1751-7915.13460
6. Bottacini F, van Sinderen D, Ventura M. Omics of bifidobacteria: Research and insights into their health-promoting activities. Biochem J. 2017;474(24):4137–52. https://doi.org/10.1042/BCJ20160756
7. Bozkurt HS, Quigley EM. The probiotic Biffdobacterium in the management of Coronavirus: A theoretical basis. Int J Immunopathol Pharmacol. 2020;34:2058738420961304. https://doi.org/10.1177/2058738420961304
8. He BL, Xiong Y, Hu TG, Zong MH, Wu H. Biffdobacterium spp. as functional foods: A review of current status, challenges, and strategies. Crit Rev Food Sci Nutr. 2022;63(26):8048–65. https://doi.org/10.1080/10408398.2022.2054934
9. McFarland LV, Evans CT, Goldstein EJC. Strain-specificity and disease-specificity of probiotic efficacy: A systematic review and meta-analysis. Front Med (Lausanne). 2018;5:124. https://doi.org/10.3389/fmed.2018.00124
10. Żółkiewicz J, Marzec A, Ruszczyński M, Feleszko W. Postbiotics — a step beyond pre- and probiotics. Nutrients. 2020;12(8):2189. https://doi.org/10.3390/nu12082189
11. Merenstein D, Pot B, Leyer G, Ouwehand AC, Preidis GA, Elkins CA, et al. Emerging issues in probiotic safety: 2023 perspectives. Gut Microbes. 2023;15(1):2185034. https://doi.org/10.1080/19490976.2023.2185034
12. Amerkhanova AM, Aleshkin AV, Zhilenkova OG. Bifidobacterial and lactobacillary consortium for preparing bacterial preparations and dietary supplements for correcting gastrointestinal microflora in individuals of fourteen and older, and method for preparing it, dietary supplement for correcting gastrointestinal microflora in individuals of fourteen and older and bacterial preparation for treating dysbiotic gastrointestinal conditions in individuals of fourteen and older. Patent of the Russian Federation No. 2491336; 2013 (In Russ.). EDN: GRJUWE
13. Glushanova NA, Verbitskaya NB, Petrov LI, Blinov AI, Shenderov BA. Study of auto-, iso- and gomoantagonism of probiotical lactobacilli strains. Bulletin of the VSNC SO RAMN. 2005;(6):138–42 (In Russ.). EDN: LGKXGN
14. Bukharin OV. Persistence of pathogenic bacteria. Moscow: Meditsina; 1999 (In Russ.).
15. Zielke RA, Le Van A, Baarda BI, Herrera MF, Acosta CJ, Jerse AE, Sikora AE. SliC is a surface-displayed lipoprotein that is required for the anti-lysozyme strategy during Neisseria gonorrhoeae infection. PLoS Pathog. 2018;5;14(7):e1007081. https://doi.org/10.1371/journal.ppat.1007081
16. Nozhevnikova AN, Bochkova EA, Plakunov VK. Multispecies biofilms in ecology, medicine and biotechnology. Microbiology. 2017;84(6):623–44 (In Russ.). https://doi.org/10.7868/S0026365615060117
17. Bukharin OV, Ivanova EV, Perunova NB. Method of selection of indigenic strains of human intestinal bifidobacteria for their inclusion in probiotic preparations. Patent of the Russian Federation No. 2806579; 2023 (In Russ.). EDN: DSDIIC
18. Bukharin OV, Perunova NB, Ivanova EV. Method for determining level of biocompatibility of bifid bacteria and/or lactic bacteria strains. Patent of the Russian Federation No. 2676910; 2019 (In Russ.). EDN: SCYHTI
19. Kwoji ID, Aiyegoro OA, Okpeku M, Adeleke MA. Multi-strain probiotics: Synergy among isolates enhances biological activities. Biology (Basel). 2021;10(4):322. https://doi.org/10.3390/biology10040322
20. Bukharin OV, Perunova NB, Ivanova EV, Bekpergenova AV. Biffdobacterium biffdum ICIS-310 bacterium strain — producer of inhibitor of pro-inflammatory cytokine INF-γ. Patent of the Russian Federation No. 2670054; 2018 (In Russ.). EDN: WAICBT
21. Bukharin OV, Perunova NB, Ivanova EV, Andryushchenko SV. Bacterial strain Biffdobacterium longum ICIS-505 — producer of biologically active substances possessing antipersistent activity with respect to opportunistic and pathogenic bacteria and yeast fungi. Patent of the Russian Federation No. 2704423; 2018 (In Russ.). EDN: IYKBDB
22. Merritt JH, Kadouri DE, O’Toole GA. Growing and analyzing static biofilms. Curr Protoc Microbiol. 2005; Chapter 1:Unit-1B.1. https://doi.org/10.1002/9780471729259.mc01b01s00
23. Mater DD, Langella P, Corthier G, Flores MJ. A probiotic Lactobacillus strain can acquire vancomycin resistance during digestive transit in mice. J Mol Microbiol Biotechnol. 2008;14(1–3):123–7. https://doi.org/10.1159/000106091
24. Pino A, Bartolo E, Caggia C, Cianci A, Randazzo CL. Detection of vaginal lactobacilli as probiotic candidates. Sci Rep. 2019; 9(1):3355. https://doi.org/10.1038/s41598-019-40304-3
25. Toomey N, Bolton D, Fanning S. Characterisation and transferability of antibiotic resistance genes from lactic acid bacteria isolated from Irish pork and beef abattoirs. Res Microbiol. 2010;161(2):127–35. https://doi.org/10.1016/j.resmic.2009.12.010
26. Li B, Chen D, Lin F, Wu C, Cao L, Chen H, et al. Genomic island-mediated horizontal transfer of the erythromycin resistance gene erm(X) among Biffdobacteria. Appl Environ Microbiol. 2022;88(10):e0041022. https://doi.org/10.1128/aem.00410-22
27. Andryushchenko SV, Ivanova EV, Perunova NB, Bukharin OV. Genetic characteristics of the adaptive potential of bifidobacteria in the biotope of distal human intestine. Journal of Microbiology, Epidemiology and Immunobiology. 2018;(4):4–11 (In Russ.). https://doi.org/10.36233/0372-9311-2018-4-4-11
28. Mallick S, Das S. Acid-tolerant bacteria and prospects in industrial and environmental applications. Appl Microbiol Biotechnol. 2023;107(11):3355–74. https://doi.org/10.1007/s00253-023-12529-w
29. Neschislyaev VA, Mokin PA, Orlova EV, Maslov YuN, Savina AS. Acid formation and acid resistance of probiotics. Medical & Pharmaceutical Journal “Pulse”. 2020;22(6):34–8 (In Russ.). EDN: XMXXIN
30. Meghrous J, Euloge P, Junelles AM, Ballongue J, Petitdemange H. Screening of Biffdobacterium strains for bacteriocins production. Biotechnol Lett. 1990;12:575–80. https://doi.org/10.1007/BF01030755
31. Bilotta AJ, Cong Y. Gut microbiota metabolite regulation of host defenses at mucosal surfaces: Implication in precision medicine. Precis Clin Med. 2019;2(2):110–9. https://doi.org/10.1093/pcmedi/pbz008
Supplementary files
![]() |
1. Table S1. Sensitivity of B. bifidum ICIS-310 and B. longum ICIS-505 to antimicrobials | |
Subject | ||
Type | Other | |
Download
(726KB)
|
Indexing metadata ▾ |
Review
For citations:
Perunova N.B., Bukharin O.V., Ivanova E.V., Bekpergenova A.V., Bondarenko T.A. Probiotic properties of an indigenous strain composition of Bifidobacterium bifidum ICIS-310 and Bifidobacterium longum ICIS-505 in vitro. Biological Products. Prevention, Diagnosis, Treatment. 2025;25(2):203-213. (In Russ.) https://doi.org/10.30895/2221-996X-2025-565