Preview

Biological Products. Prevention, Diagnosis, Treatment

Advanced search

International standards for monoclonal antibodies for assessing the biological activity of medicines: A status update

https://doi.org/10.30895/2221-996X-2023-23-4-480-498

Abstract

Scientific relevance. The clinical effects and the expiration of patents for original (reference) biotechnological medicines based on monoclonal antibodies (mAbs) stimulated the development of biosimilar mAbs. The quality profile of a biosimilar mAb should correspond to the quality of the reference medicinal product. When demonstrating biosimilarity and determining the activity of medicines as part of batch quality control, analysts should study the biological properties of mAbs using suitable reference standards. The lack of international standards (ISs) makes mAb manufacturers use in-house reference standards. There is a risk of obtaining non-uniform quality and efficacy data because of the use of in-house reference standards, the heterogeneity and structural complexity of mAbs, and the relationship between the biological activity and efficacy of mAbs.

Aim. This study aimed to analyse the relevance of and need for ISs for the biological activity of biotherapeutic mAbs and to define the role of reference medicinal products and ISs in assessing biosimilarity and testing medicines throughout their lifecycle.

Discussion. This review covers the issues arising from the lack of ISs for assessing the biological activity of mAbs and the role and significance of reference products and ISs for biosimilars. The authors describe the specifics of studying the biological properties of mAbs and summarise the data on the need to develop and use ISs for the standardisation of biological tests. This review presents the results of studies on the first ISs established by the World Health Organisation to assess the biological activity of mAbs; these results suggest the need to standardise mAbs using ISs to ensure the quality, safety, and efficacy of mAb therapy.

Conclusions. The use of ISs for mAbs plays a key role in harmonising biological activity assessments. Publicly available ISs serve as primary standards for the calibration of secondary reference materials. Moreover, ISs are required for the harmonisation of activity evaluation (in IU) between laboratories and for the consistency of the activity of various medicinal products from different manufacturers that share the same INN. The use of ISs by mAb manufacturers will contribute to ensuring the quality of mAbs and clinical monitoring of the effectiveness of their use.

About the Authors

L. A. Gayderova
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Lidia A. Gayderova, Cand. Sci. (Med.)

8/2 Petrovsky Blvd, Moscow 127051



N. A. Alpatova
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Natalia А. Alpatova, Dr. Sci. (Biol.)

8/2 Petrovsky Blvd, Moscow 127051



S. L. Lysikova
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Svetlana L. Lysikova, Cand. Sci. (Med.)

8/2 Petrovsky Blvd, Moscow 127051



M. L. Baykova
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Marina L. Baykova

8/2 Petrovsky Blvd, Moscow 127051



A. M. Guskov
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Alexander M. Guskov

8/2 Petrovsky Blvd, Moscow 127051



D. A. Zubkov
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Dmitriy A. Zubkov

8/2 Petrovsky Blvd, Moscow 127051



References

1. Le Basle Y, Chennell P, Tokhadze N, Astier A, Sautou V. Physicochemical stability of monoclonal antibodies: a review. J Pharm Sci. 2020;109(1):169–90. https://doi.org/10.1016/j.xphs.2019.08.009

2. Nupur N, Joshi S, Gulliarme D, Rathore AS. Analytical similarity assessment of biosimilars: global regulatory landscape, recent studies and major advancements in orthogonal platforms. Front Bioeng Biotechnol. 2022;10:832059. https://doi.org/10.3389/fbioe.2022.832059

3. Avdeeva ZhI, Soldatov AA, Alpatova NA, Medunitsyn NV, Bondarev VP, Mironov AN, et al. Preparations of next generation monoclonal antibodies (issues and prospects). Biopreparation (Biopharmaceuticals). 2015;(1):21–35 (In Russ.). EDN: UBEKGD

4. Lee CC, Perchiacca JM, Tessier PM. Toward aggregation-resistant antibodies by design. Trends Biotechnol. 2013;31(11):612–20. https://doi.org/10.1016/j.tibtech.2013.07.002

5. Alhazmi HA, Albratty M. Analytical techniques for the characterization and quantification of monoclonal antibodies. Pharmaceuticals (Basel). 2023;16(2):291. https://doi.org/10.3390/ph16020291

6. Alpatova NA, Gayderova LA, Yakovlev AK, Motuzova EV, Lysikova SL, Soldatov AA et al. Assessment of biotechnological products’ specific activity. BIOpreparations. Prevention, Diagnosis, Treatment. 2017;17(1):13–26 (In Russ.). EDN: YHSSGL

7. Mimura Y, Katoh T, Saldova R, O’Flaherty R, Izumi T, Mimura-Kimura Y, et al. Glycosylation engineering of therapeutic IgG antibodies: challenges for the safety, functionality and efficacy. Protein Cell. 2018;9(1):47–62. https://doi.org/10.1007/s13238-017-0433-3

8. Dash R, Singh SK, Chirmule N, Rathore AS. Assessment of functional characterization and comparability of biotherapeutics: a review. AAPS J. 2021;24(1):15. https://doi.org/10.1208/s12248-021-00671-0

9. Láng JA, Balogh ZC, Nyitrai MF, Juhász C, Gilicze AKB, Iliás A, et al. In vitro functional characterization of biosimilar therapeutic antibodies. Drug Discov Today Technol. 2020;37:41–50. https://doi.org/10.1016/j.ddtec.2020.11.010

10. Wang X, An Z, Luo W, Xia N, Zhao Q. Molecular and functional analysis of monoclonal antibodies in support of biologics development. Protein Cell. 2018;9(1):74–85. https://doi.org/10.1007/s13238-017-0447-x

11. Wild D, ed. The immunoassay handbook: theory and applications of ligand binding, ELISA and related techniques. 4th ed. Elsevier Science; 2013.

12. Lebakken CS, Riddle SM, Singh U, Frazee WJ, Eliason HC, Gao Y, et al. Development and applications of a broad-coverage, TR-FRET-based kinase binding assay platform. J Biomol Screen. 2009;14(8):924–35. https://doi.org/10.1177/1087057109339207

13. Noto A, Ngauv P, Trautmann L. Cell-based flow cytometry assay to measure cytotoxic activity. J Vis Exp. 2013;82:e51105. https://doi.org/10.3791/51105

14. Schasfoort RBM. Handbook of surface plasmon resonance. 2nd ed. RSC Publishing; 2017. https://doi.org/10.1039/9781788010283

15. Beyer B, Schuster M, Jungbauer A, Lingg N. Micro-heterogeneity of recombinant antibodies: analytics and functional impact. Biotechnol J. 2018;13(1). https://doi.org/10.1002/biot.201700476

16. Rosales C. Fcγ receptor heterogeneity in leukocyte functional responses. Front Immunol. 2017;8:280. https://doi.org/10.3389/fimmu.2017.00280

17. Branstetter E, Duff RJ, Kuhns S, Padaki R. Fc glycan sialylation of biotherapeutic monoclonal antibodies has limited impact on antibody-dependent cellular cytotoxicity. FEBS Open Bio. 2021;11(11):2943–9. https://doi.org/10.1002/2211-5463.13267

18. Velasco-Velázquez MA, Salinas-Jazmín N, HisakiItaya E, Cobos-Puc L, Xolalpa W, González G, et al. Extensive preclinical evaluation of an infliximab biosimilar candidate. Eur J Pharm Sci. 2017;102:35–45. https://doi.org/10.1016/j.ejps.2017.01.038

19. Eon-Duval A, Broly H, Gleixner R. Quality attributes of recombinant therapeutic proteins: an assessment of impact on safety and efficacy as part of a quality by design development approach. Biotechnol Prog. 2012;28(3):608–22. https://doi.org/10.1002/btpr.1548

20. Ishii-Watabe A, Kuwabara T. Biosimilarity assessment of biosimilar therapeutic monoclonal antibodies. Drug Metab Pharmacokinet. 2019;34(1):64–70. https://doi.org/10.1016/j.dmpk.2018.11.004

21. Prior S, Metcalfe C, Hufton SE, Wadhwa M, Schneider CK, Burns C. Maintaining standards for biosimilar monoclonal antibodies. Nat Biotechnol. 2021;39(3):276–280. https://doi.org/10.1038/s41587-021-00848-0

22. Vezér B, Buzás Z, Sebeszta M, Zrubka Z. Authorized manufacturing changes for therapeutic monoclonal antibodies (mAbs) in European Public Assessment Report (EPAR) documents. Curr Med Res Opin. 2016;32(5):829–34. https://doi.org/10.1185/03007995.2016.1145579

23. Acha V, Mestre-Ferrandiz J. Translating European regulatory approval into healthcare uptake for biosimilars: the second translational gap. Technol Anal Strateg Manag. 2017;29(3):263–75. https://doi.org/10.1080/09537325.2017.1285396

24. Alsamil AM, Giezen TJ, Egberts TC, Doevendans E, Leufkens HG, Gardarsdottir H. Nature and timing of post-approval manufacturing changes of tumour necrosis factor α inhibitor products: a 20-year follow-up study of originators and biosimilars. Eur J Pharm Sci. 2022;175:106227. https://doi.org/10.1016/j.ejps.2022.106227

25. Prior S, Hufton SE, Fox B, Dougall T, Rigsby P, Bristow A. International standards for monoclonal antibodies to support pre- and post-marketing product consistency: evaluation of a candidate international standard for the bioactivities of rituximab. MAbs. 2018;10(1):129–42. https://doi.org/10.1080/19420862.2017.1386824

26. Thorpe R, Wadhwa M. Intended use of reference products & WHO international standards/ reference reagents in the development of similar biological products (biosimilars). Biologicals. 2011;39(5):262–5. https://doi.org/10.1016/j.biologicals.2011.06.005

27. Udpa N, Million RP. Monoclonal antibody biosimilars. Nat Rev Drug Discov. 2016;15(1):13–4. https://doi.org/10.1038/nrd.2015.12

28. Metcalfe С, Dougall Т, Bird С, Rigsby Р, Behr-Gross М-Е, Wadhwa М. The first World Health Organization International Standard for infliximab products: a step towards maintaining harmonized biological activity. MAbs. 2019;11(1):13–25. https://doi.org/10.1080/19420862.2018.1532766

29. Tebbey PW, Varga A, Naill M, Clewell J, Venema J. Consistency of quality attributes for the glycosylated monoclonal antibody Humira® (adalimumab). MAbs. 2015;7(5):805–11. https://doi.org/10.1080/19420862.2015.1073429

30. Kang HN, Thorpe R, Knezevic I. The regulatory landscape of biosimilars: WHO efforts and progress made from 2009 to 2019. Biologicals. 2020;65:1–9. https://doi.org/10.1016/j.biologicals.2020.02.005

31. Lamanna WC, Holzmann J, Cohen HP, Guo X, Schweigler M, Stangler T, et al. Maintaining consistent quality and clinical performance of biopharmaceuticals. Expert Opin Biol Ther. 2018;18(4):369–79. https://doi.org/10.1080/14712598.2018.1421169

32. Wadhwa M, Bird Ch, Dilger P, Rigsby P, Jia H, Behr-Gross ME. Establishment of the first WHO International Standard for etanercept, a TNF receptor II Fc fusion protein: Report of an international collaborative study. J Immunol Methods. 2017;447:14–22. https://doi.org/10.1016/j.jim.2017.03.007

33. Wadhwa M, Bird C, Atkinson E, Cludts I, Rigsby P. The first WHO international standard for adalimumab: dual role in bioactivity and therapeutic drug monitoring. Front Immunol. 2021;12:636420. https://doi.org/10.3389/fimmu.2021.636420

34. Jia H, Harikumar P, Atkinson E, Rigsby P, Wadhwa M. The first WHO international standard for harmonizing the biological activity of bevacizumab. Biomolecules. 2021;11(11):1610. https://doi.org/10.3390/biom11111610

35. Goffe B, Cather JC. Etanercept: an overview. J Am Acad Dermatol. 2003;49(2 Suppl):105–11. https://doi.org/10.1016/mjd.2003.554

36. Tracey D, Klareskog L, Sasso EN, Salfeld JG, Tak PP. Tumor necrosis factor antagonist mechanisms of action: a comprehensive review. Pharmacol Ther. 2008;117(2):244–79. https://doi.org/10.1016/j.pharmthera.2007.10.001

37. Glennie MJ, French RR, Cragg MS, Taylor RP. Mechanisms of killing by anti-CD20 monoclonal antibodies. Mol Immunol. 2007;44(16):3823–37. https://doi.org/10.1016/j.molimm.2007.06.151

38. Smith MR. Rituximab (monoclonal anti-CD20 antibody): mechanisms of action and resistance. Oncogene. 2003;22(47):7359–68. https://doi.org/10.1038/sj.onc.1206939

39. Salinas-Jazmín N, Medina-Rivero E, Velasco-Velázquez MA. Bioassays for the evaluation of target neutralization and complement-dependent cytotoxicity (CDC) of therapeutic antibodies. Methods Mol Biol. 2022;2313:281–94. https://doi.org/10.1007/978-1-0716-1450-1_17

40. Marušič M, Klemenčič A. Adalimumab — general considerations. J Pharmacol Clin Toxicol. 2018;6(2):1104–11.

41. Roda G, Jharap B, Neeraj N, Colombel JF. Loss of response to anti-TNFs: definition, epidemiology, and management. Clin Transl Gastroenterol. 2016;7(1):e135. https://doi.org/10.1038/ctg.2015.63

42. Meager A, Leung H, Woolley J. Assays for tumour necrosis factor and related cytokines. J Immunol Methods. 1989;116(1):1–17. https://doi.org/10.1016/0022-1759(89)90306-2

43. Khabar KS, Siddiqui S, Armstrong JA. WEHI-13VAR: a stable and sensitive variant of WEHI 164 clone 13 fibrosarcoma for tumor necrosis factor bioassay. Immunol Lett. 1995;46(1–2):107–10. https://doi.org/10.1016/0165-2478(95)00026-2

44. Minafra L, Di Cara G, Albanese NN, Cancemi P. Proteomic differentiation pattern in the U937 cell line. Leuk Res. 2011;35(2):226–36. https://doi.org/10.1016/j.leukres.2010.07.040

45. Ferrara N, Hillan KJ, Gerber HP, Novotny W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov. 2004;3(5):391–400. https://doi.org/10.1038/nrd1381

46. Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: Beyond discovery and development. Cell. 2019;176(6):1248–64. https://doi.org/10.1016/j.cell.2019.01.021

47. Wang Y, Fei D, Vanderlaan M, Song A. Biological activity of bevacizumab, a humanized anti-VEGF antibody in vitro. Angiogenesis. 2004;7(4):335–45. https://doi.org/10.1007/s10456-004-8272-2

48. Ebbers HC, van Meer PJ, Moors EH, Mantel-Teeuwisse AK, Leufkens HG, Schellekens H. Measures of biosimilarity in monoclonal antibodies in oncology: the case of bevacizumab. Drug Discov Today. 2013;18(17–18):872–9. https://doi.org/10.1016/j.drudis.2013.05.004

49. Jefferis R. Recombinant antibody therapeutics: the impact of glycosylation on mechanisms of action. Trends Pharmacol Sci. 2009;30(7):356–62. https://doi.org/10.1016/j.tips.2009.04.007

50. Beck A, Wagner-Rousset E, Ayoub D, Van Dorsselaer A, Sanglier-Cianférani S. Characterization of therapeutic antibodies and related products. Anal Chem. 2013;85(2):715–36. https://doi.org/10.1021/ac3032355

51. Molina MA, Codony-Servat J, Albanell J, Rojo F, Arribas J, Baselga J. Trastuzumab (herceptin), a humanized anti-Her2 receptor monoclonal antibody, inhibits basal and activated Her2 ectodomain cleavage in breast cancer cells. Cancer Res. 2001;61(12):4744–9. PMID: 11406546

52. Collins DM, O’Donovan N, McGowan PM, O’Sullivan F, Duffy MJ, Crown J. Trastuzumab induces antibody-dependent cell-mediated cytotoxicity (ADCC) in HER-2-non-amplified breast cancer cell lines. Ann Oncol. 2012;23(7):1788–95. https://doi.org/10.1093/annonc/mdr484

53. Menard S, Pupa SM, Campiglio M, Tagliabue E. Biologic and therapeutic role of HER2 in cancer. Oncogene. 2003;22(42):6570–8. https://doi.org/10.1038/sj.onc.1206779

54. Vincenzi B, Schiavon G, Silletta M, Santini D, Tonini G. The biological properties of cetuximab. Crit Rev Oncol Hematol. 2008;68(2):93–106. https://doi.org/10.1016/j.critrevonc.2008.07.006

55. Kimura H, Sakai K, Arao T, Shimoyama T, Tamura T, Nishio K. Antibody-dependent cellular cytotoxicity of cetuximab against tumor cells with wild-type or mutant epidermal growth factor receptor. Cancer Sci. 2007;98(8):1275–80. https://doi.org/10.1111/j.1349-7006.2007.00510.x

56. Beck A, Wagner-Rousset E, Ayoub D, Van Dorsselaer A, Sanglier-Cianférani S. Characterization of therapeutic antibodies and related products. Anal Chem. 2013;85(2):715–36. https://doi.org/10.1021/ac3032355

57. Yazdi MH, Faramarzi MA, Nikfar S, Abdollahi M. A comprehensive review of clinical trials on EGFR inhibitors such as cetuximab and panitumumab as monotherapy and in combination for treatment of metastatic colorectal cancer. Avicenna J Med Biotechnol. 2015;7(4):134–44. PMID: 26605007


Supplementary files

Review

For citations:


Gayderova L.A., Alpatova N.A., Lysikova S.L., Baykova M.L., Guskov A.M., Zubkov D.A. International standards for monoclonal antibodies for assessing the biological activity of medicines: A status update. Biological Products. Prevention, Diagnosis, Treatment. 2023;23(4):480-498. (In Russ.) https://doi.org/10.30895/2221-996X-2023-23-4-480-498

Views: 1225


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2221-996X (Print)
ISSN 2619-1156 (Online)