Preview

Biological Products. Prevention, Diagnosis, Treatment

Advanced search

Effects of pertussis toxin and Bordetella pertussis lipo-oligosaccharide on the specific toxicity and potency of whole-cell pertussis vaccines

https://doi.org/10.30895/2221-996X-2023-23-3-333-347

Abstract

Scientific relevance. The content of Bordetella pertussis lipo-oligosaccharide (LOS) and the residual levels of active pertussis toxin (PT) are generally accepted to be the primary factors that determine the reactogenicity of whole-cell pertussis vaccines. To improve the quality of whole-cell pertussis vaccines, it is both relevant and necessary to study the relationship between the toxicity of B. pertussis bacterial cell components and the main quality parameters of these vaccines, including their potency and specific toxicity, as termed in the WHO recommendations and the European Pharmacopoeia.

Aim. This study aimed to analyse the effects of B. pertussis LOS and residual active PT on the specific toxicity and potency of adsorbed diphtheria, tetanus, and whole-cell pertussis (DTwP) vaccines.

Materials and methods. The authors tested 57 commercial batches of adsorbed DTwP vaccines for compliance with the regulatory standards and product specification files. Vaccine batches that failed specific toxicity tests formed Group 1, and the other batches were designated as Group 2. The potency was tested in F1 CBA/Ca×C57BL/6J hybrid mice with experimentally induced meningoencephalitis that were immunised with DTwP and reference vaccines. The authors assessed the specific toxicity of DTwP vaccines by changes in body weight following intraperitoneal administration. The toxic activity was assessed indirectly by changes in body weight in the first 16–24 h (B. pertussis LOS) and on day 7 (PT) after dosing. The authors used Spearman’s rank correlation coefficient to measure the strength of correlation between the toxic activity of vaccine components and the specific toxicity and potency of the vaccine, which were established using the same vaccine batches.

Results. The authors measured the toxic activity of LOS and residual active PT in the vaccine batches studied. The correlation coefficients between the specific toxicity and potency of the vaccines and the toxic activity of LOS were 0.113 (p>0.05) and 0.049 (p>0.05), respectively. Similarly, the correlation coefficients between the specific toxicity and potency of the vaccines and the toxic activity of PT accounted for 0.595 (p<0.01) and –0.534 (p<0.01), respectively.

Conclusions. The authors studied the toxic activity of B. pertussis LOS and residual active PT in whole-cell pertussis vaccines and found an inverse correlation between the potency of the vaccines and the toxic activity of residual active PT. The study demonstrated that the specific toxicity test for whole-cell pertussis vaccines fails to detect and quantify B. pertussis LOS in the samples. The authors advise to determine the content of LOS in the B. pertussis strains intended for the production of whole-cell pertussis vaccines, which is not yet an accepted practice in the Russian Federation.

About the Authors

I. A. Alekseeva
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Irina A. Alekseeva, Dr. Sci. (Med.)

8/2 Petrovsky Blvd, Moscow 127051, Russian Federation



I. V. Ibragimkhalilova
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Ilkhamya V. Ibragimkhalilova, Cand. Sci. (Biol)

8/2 Petrovsky Blvd, Moscow 127051, Russian Federation



D. N. Lepekhova
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Darya N. Lepekhova

8/2 Petrovsky Blvd, Moscow 127051, Russian Federation



References

1. Wirsing von König CH, Campins-Marti M, Finn A, Guiso N, Mertsola J, and Liese J. Pertussis immunization in the global pertussis initiative European region: recommended strategies and implementation considerations. Pediatr Infect Dis J. 2005;24(5 Suppl):S87–92. https://doi.org/10.1097/01.inf.0000160920.75623.a3

2. Simondon F, Preziosi MP, Yam A, Kane CT, Chabirand L, Iteman I, et al. A randomized double-blind trial comparing a two-component acellular to a whole-cell pertussis vaccine in Senegal. Vaccine. 1997;15(15):1606–12. https://doi.org/10.1016/s0264-410x(97)00100-x

3. Winter K, Harriman K, Zipprich J, Schechter R, Talarico J, Watt J, Chavez G. California pertussis epidemic, 2010. J Pediatr. 2012;161(6):1091–6. https://doi.org/10.1016/j.jpeds.2012.05.041

4. Libster R, Edwards KM. Re-emergence of pertussis: what are the solutions? Expert Rev Vaccines. 2012;11(11):1331–46. https://doi.org/10.1586/erv.12.118

5. McGirr A, Fisman DN. Duration of pertussis immunity after DTaP immunization: a meta-analysis. Pediatrics. 2015;135(2):331–43. https://doi.org/10.1542/peds.2014-1729

6. Pertussis vaccines: WHO position papers. Wkly Epidemiol Rec. 1999;74(18):137–44.

7. Pertussis vaccines: WHO position paper. Wkly Epidemiol Rec. 2010;85(40):385–400. PMID: 20939150

8. Lugauer S, Heininger U, Cherry JD, Stehr K. Long-term clinical effectiveness of an acellular pertussis component vaccine and a whole cell pertussis component vaccine. Eur J Pediatr. 2002;161(3):142–146. https://doi.org/10.1007/s00431-001-0893-5

9. Melvin JA, Scheller EV, Miller JF, Cotter PA. Bordetella pertussis pathogenesis: current and future challenges. Nat Rev Microbiol. 2014;12(4):274–88. https://doi.org/10.1038/nrmicro3235

10. Witt MA, Arias L, Katz PH, Truong ET, Witt DJ. Reduced risk of pertussis among persons ever vaccinated with whole cell pertussis vaccine compared to recipients of acellular pertussis vaccines in a large US cohort. Clin Infect Dis. 2013;56(9):1248–54. https://doi.org/10.1093/cid/cit046

11. Klein NP, Bartlett J, Fireman B, Baxter R. Waning Tdap effectiveness in adolescents. Pediatrics. 2016;137(3):e20153326. https://doi.org/10.1542/peds.2015-3326

12. Liko J, Robison SG, Cieslak PR. Priming with whole–cell versus acellular pertussis vaccine. N Engl J Med. 2013;368(6):581–2. https://doi.org/10.1056/nejmc1212006

13. Klein NP, Bartlett J, Fireman B, Rowhani-Rahbar A, Baxter R. Comparative effectiveness of acellular versus whole–cell pertussis vaccines in teenagers. Pediatrics. 2013;131(6):e1716–22. https://doi.org/10.1542/peds.2012-3836

14. Warfel JM, Edwards KM. Pertussis vaccines and the challenge of inducing durable immunity. Curr Opin Immunol. 2015;35:48–54. https://doi.org/10.1016/j.coi.2015.05.008

15. Chuprinina RP, Alexeeva IA. The possibility of increasing the potency and stability of whole-cell pertussis component of combined vaccines. Epidemiology and Vaccinal Prevention. 2014;(2):89–95 (In Russ.). EDN: SBEUOR

16. Hozbor D. New pertussis vaccines: a need and a challenge. In: Fedele G, Ausiello C, eds. Pertussis infection and vaccines. Advances in experimental medicine and biology. Springer; 2019. P. 115–26. https://doi.org/10.1007/5584_2019_407

17. Locht C, Papin JF, Lecher S, Debrie AS, Thalen M, Solovay K, et al. Live attenuated pertussis vaccine BPZE1 protects baboons against Bordetella pertussis disease and infection. J Infect Dis. 2017;216(1):117–24. https://doi.org/10.1093/infdis/jix254

18. Li P, Asokanathan C, Liu F, Khaing KK, Kmiec D, Wei X, et al. PLGA nano/micro particles encapsulated with pertussis toxoid (PTd) enhances Th1/Th17 immune response in a murine model. Int J Pharm. 2016;513(1–2):183–90. https://doi.org/10.1016/j.ijpharm.2016.08.059

19. Barkoff AM, Knuutila A, Mertsola J, He Q. Evaluation of anti-PT antibody response after pertussis vaccination and infection: the importance of both quantity and quality. Toxins (Basel). 2021;13(8):508. https://doi.org/10.3390/toxins13080508

20. Zubov NN, Kuvakin VI, Umarov SZ. Biomedical statistics: information technologies of data analysis in medicine and pharmacy. Moscow: RuScience; 2023. (In Russ.).

21. Nikaido H, Vaara M. Outer membrane. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE, eds. Escherichia coli and Salmonella typhimurium – cellular and molecular biology. Washington DC: ASM; 1987. P. 7–22.

22. Whitfield C, Trent MS. Biosynthesis and export of bacterial lipopolysaccharides. Annu Rev Biochem. 2014;83:99–128. https://doi.org/10.1146/annurev-biochem-060713-035600

23. Sperandeo P, Martorana AM, Polissi A. Lipopolysaccharide biogenesis and transport at the outer membrane of Gram-negative bacteria. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(11):1451–60. https://doi.org/10.1016/j.bbalip.2016.10.006

24. Pittman M. Pertussis toxin: the cause of the harmful effects and prolonged immunity of whooping cough. A hypothesis. Rev. Infect Dis. 1979;1(3):401–12. https://doi.org/10.1093/clinids/1.3.401

25. Koj S, Ługowski C, Niedziela T. Bordetella pertussis lipooligosaccharide–derived neoglycoconjugates — new components of pertussis vaccine. Postepy Hig Med Dosw (Online). 2015;69:1013–30 (In Pol.). PMID: 26400888

26. Flak TA, Goldman WE. Signalling and cellular specificity of airway nitric oxide production in pertussis. Cell Microbiol. 1999;1(1):51–60. https://doi.org/10.1046/j.1462-5822.1999.00004.x

27. Higgins SC, Jarnicki AG, Lavelle EC, Mills KHG. TLR4 mediates vaccine-induced protective cellular immunity to Bordetella pertussis : role of IL-17-producing T cells. J Immunol. 2006;177(11):7980–9. https://doi.org/10.4049/jimmunol.177.11.7980

28. Kapsenberg ML. Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol. 2003;3(12):984–93. https://doi.org/10.1038/nri1246

29. Arenas J, Pupo E, Phielix C, David D, Zariri A, Zamyatina A, et al. Shortening the lipid A acyl chains of Bordetella pertussis enables depletion of lipopolysaccharide endotoxic activity. Vaccines (Basel). 2020;8(4):594. https://doi.org/10.3390/vaccines8040594

30. Trollfors B, Lagergard T, Taranger J, Bergfors E, Schneerson R, Robbins JB. Serum immunoglobulin G antibody responses to Bordetella pertussis lipooligosaccharide and B. parapertussis lipopolysaccharide in children with pertussis and parapertussis. Clin Diagn Lab Immunol. 2001;8(5):1015–7. https://doi.org/10.1128/CDLI.8.5.1015-1017.2001

31. Schaeffer LM, McCormack FX, Wu H, Weiss AA. Bordetella pertussis lipopolysaccharide resists the bactericidal effects of pulmonary surfactant protein A. J Immunol. 2004;173(3):1959–65. https://doi.org/10.4049/jimmunol.173.3.1959

32. Zahringer U, Ittig, S, Lindner B, Moll H, Schombel U, Gisch N, Cornelis GR. NMR-based structural analysis of the complete rough-type lipopolysaccharide isolated from Capnocytophaga canimorsus. J Biol Chem. 2014;289(34):23963–76. https://doi.org/10.1074/jbc.m114.571489

33. Raetz CRH, Garrett TA, Reynolds CM, Shaw WA, Moore JD, Smith DCJ Jr, et al. Kdo2–lipid A of Escherichia coli, a defined endotoxin that activates macrophages via TLR-4. J Lipid Res. 2006;47(5):1097–111. https://doi.org/10.1194/jlr.m600027-jlr200

34. Needham BD, Carroll SM, Giles DK, Georgiou G, Whiteley M, Trent MS. Modulating the innate immune response by combinatorial engineering of endotoxin. Proc Natl Acad Sci USA. 2013;110(4):1464–9. https://doi.org/10.1073/pnas.1218080110

35. Needham BD, Trent MS. Fortifying the barrier: the impact of lipid A remodelling on bacterial pathogenesis. Nat Rev Microbiol. 2013;11(7):467–81. https://doi.org/10.1038/nrmicro3047

36. Teghanemt AD, Zhang D, Levis EN, Weiss JP, Gioannini TL. Molecular basis of reduced potency of underacylated endotoxins. J Immunol. 2005;175(7):4669–76. https://doi.org/10.4049/jimmunol.175.7.4669


Supplementary files

Review

For citations:


Alekseeva I.A., Ibragimkhalilova I.V., Lepekhova D.N. Effects of pertussis toxin and Bordetella pertussis lipo-oligosaccharide on the specific toxicity and potency of whole-cell pertussis vaccines. Biological Products. Prevention, Diagnosis, Treatment. 2023;23(3):333-347. (In Russ.) https://doi.org/10.30895/2221-996X-2023-23-3-333-347

Views: 442


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2221-996X (Print)
ISSN 2619-1156 (Online)