Current approaches to quality assessment, non-clinical and clinical studies of dendritic cell vaccines in oncology
https://doi.org/10.30895/2221-996X-2023-23-2-148-161
Abstract
At present, personalised cellular immunotherapy is considered a promising approach to the treatment of malignant neoplasms. The effectiveness of these cellular immunotherapy methods is evaluated in the context of clinical and biological tumour characteristics and the state of the immune system of a particular patient. One of the immunotherapy options for cancer is the development of autologous dendritic cell vaccines.
The aim of this study was to analyse current methodological approaches to the evaluation of the quality, efficacy, and safety of dendritic cell cancer vaccines.
This review describes the functional role of dendritic cells in immune response regulation. The paper presents the results of literature analysis covering current approaches to obtaining dendritic cell vaccines with specific characteristics, quality assessment, studies of the anti-tumour efficacy of cell therapy products, and the experience of conducting non-clinical and clinical studies. The review highlights specific aspects of international experience in the registration and clinical use of cell therapy products. The authors discuss methodological approaches to non-clinical studies of dendritic cell vaccines, which should aim to obtain information to select the dose, route, and mode of administration and to identify immunological markers correlating to the clinical efficacy of cell therapy products. The paper covers international experience in conducting clinical trials of dendritic cell vaccines for various malignant neoplasms. The authors propose a list of quality attributes of human somatic cell-based medicinal products for further clinical use.
Keywords
About the Authors
T. L. NekhaevaRussian Federation
Tatiana L. Nekhaeva, Cand. Sci. (Med.)
68 Leningradskaya St., Pesochny, St Petersburg 197758
A. A. Kamaletdinova
Russian Federation
Aisylu A. Kamaletdinova
3/25 Rakhmanovsky Ln., bld. 1–4, Moscow 127994
M. F. Lutfullin
Russian Federation
Marsel F. Lutfullin
3/25 Rakhmanovsky Ln., bld. 1–4, Moscow 127994
T. V. Tabanskaya
Russian Federation
Tatiana V. Tabanskaya
8/2 Petrovsky Blvd, Moscow 127051
References
1. Swartz AM, Hotchkiss KM, Nair SK, Sampson JH, Batich KA. Generation of tumor targeted dendritic cell vaccines with improved immunogenic and migratory phenotype. In: Thomas S, ed. Vaccine Design. Methods in Molecular Biology. Vol. 2410. New York: Humana; 2022. P. 609–27. https://doi.org/10.1007/978-1-0716-1884-4_33
2. Nekhaeva TL, Danilova AB, Baldueva IA. Study of dendritic cell migration using CELL-IQ analysis system. Siberian Journal of Oncology. 2018;17(4):14–23 (In Russ.). https://doi.org/10.21294/1814-4861-2018-17-4-14-23
3. Harari A, Graciotti M, Bassani-Sternberg M, Kandalaft LE. Antitumour dendritic cell vaccination in a priming and boosting approach. Nat Rev Drug Discov. 2020;19(9):635–52. https://doi.org/10.1038/s41573-020-0074-8
4. Flamand V, Sornasse T, Thielemans K, Demanet C, Bakkus M, Bazin H, et al. Murine dendritic cells pulsed in vitro with tumor antigen induce tumor resistance in vivo. Eur J Immunol. 1994;24(3):605–10. https://doi.org/10.1002/eji.1830240317
5. Ossevoort MA, Feltkamp MC, van Veen KJ, Melief CJ, Kast WM. Dendritic cells as carriers for a cytotoxic T-lymphocyte epitope-based peptide vaccine in protection against a human papillomavirus type 16-induced tumor. J Immunother Emphasis Tumor Immunol. 1995;18(2):86–94. https://doi.org/10.1097/00002371-199508000-00002
6. Celluzzi CM, Mayordomo JI, Storkus WJ, Lotze MT, Falo LD Jr. Peptide-pulsed dendritic cells induce antigen-specific CTL-mediated protective tumor immunity. J Exp Med. 1996;183(1):283–7. https://doi.org/10.1084/jem.183.1.283
7. Nekhaeva TL, Karpov AE, Pipia NP. Searching for immunotherapeutic targets in oncology during immune synapse formation. Problems in Oncology. 2021;67(3):344–9. (In Russ). https://doi.org/10.37469/0507-3758-2021-67-3-344-349
8. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, et al. Immunobiology of dendritic cells. Annu Rev Immunol. 2000;18:767–811. https://doi.org/10.1146/annurev.immunol.18.1.767
9. Vedunova M, Turubanova V, Vershinina O, Savyuk M, Efimova I, Mishchenko T, et al. DC vaccines loaded with glioma cells killed by photodynamic therapy induce Th17 anti-tumor immunity and provide a four-gene signature for glioma prognosis. Cell Death Dis. 2022;13:1062. https://doi.org/10.1038/s41419-022-05514-0
10. Chiang CL, Balint K, Coukos G, Kandalaft LE. Potential approaches for more successful dendritic cell-based immunotherapy. Expert Opin Biol Ther. 2015;15(4):569–82. https://doi.org/10.1517/14712598.2015.1000298
11. Moiseenko VM, Baldueva IA, Gelfond ML, Orlova RM, Fahrutdinova OL, Danilova AB, et al. Method of immunotherapy with bone-marrow precursors of dendrite cells, sensibilised with photomodified tumor cells in vivo, for patients disseminated with solid tumors. Patent of the Russian Federation No. 2376033; 2009 (In Russ.).
12. Godoy-Tena G, Ballestar E. Epigenetics of dendritic cells in tumor immunology. Cancers (Basel). 2022;14(5):1179. https://doi.org/10.3390/cancers14051179
13. Fu C, Zhou L, Mi QS, Jiang A. Plasmacytoid dendritic cells and cancer immunotherapy. Cells. 2022;11(2):222. https://doi.org/10.3390/cells11020222
14. Murphy TL, Murphy KM. Dendritic cells in cancer immunology. Cell Mol Immunol. 2022;19(1):3–13. https://doi.org/10.1038/s41423-021-00741-5
15. Gardner A, de Mingo Pulido Á, Ruffell B. Dendritic cells and their role in immunotherapy. Front Immunol. 2020;11:924. https://doi.org/10.3389/fimmu.2020.00924
16. Noubade R, Majri-Morrison S, Tarbell KV. Beyond cDC1: Emerging roles of DC crosstalk in cancer immunity. Front Immunol. 2019;10:1014. https://doi.org/10.3389/fimmu.2019.01014
17. Melnikova EV, Merkulova OV, Chaplenko AA, Merkulov VA. Design of preclinical studies of biomedical cell products: characteristics, key principles and requirements. BIOpreparations. Prevention, Diagnosis, Treatment. 2017;17(3):133–44 (In Russ.).
18. Tikhomirova AV, Goryachev DV, Merkulov VA, Lysikova IV, Gubenko AI, Zebrev AI, et al. Preclinical and clinical aspects of the development of biomedical cell products. Bulletin of the Scientifi c Centre for Expert Evaluation of Medicinal Products. 2018;8(1):23–35 (In Russ.). https://doi.org/10.30895/1991-2919-2018-8-1-23-35
19. Seyhan AA. Lost in translation: the valley of death across preclinical and clinical divide — identifi cation of problems and overcoming obstacles. Transl Med Commun. 2019;4(1):18. https://doi.org/10.1186/s41231-019-0050-7
20. Avdonkina NA, Danilova AB, Misyurin VA, Prosekina EA, Girdyuk DV, Emelyanova NV, et al. Biological features of tissue and bone sarcomas investigated using an in vitro model of clonal selection. Pathol Res Pract. 2021;217:153214. https://doi.org/10.1016/j.prp.2020.153214
21. Shankar G, Bader R, Lodge PA. The COSTIM bioassay: a novel potency test for dendritic cells. J Immunol Methods. 2004;285(2):293–9. https://doi.org/10.1016/j.jim.2003.12.008
22. Lamano JB, Ampie L, Choy W, Kesavabhotla K, DiDomenico JD, Oyon DE, et al. Immunomonitoring in glioma immunotherapy: current status and future perspectives. J Neurooncol. 2016;127(1):1–13. https://doi.org/10.1007/s11060-015-2018-4
23. Cassioli C, Baldari CT. The expanding arsenal of cytotoxic T cells. Front Immunol. 2022;13:883010. https://doi.org/10.3389/fimmu.2022.883010
24. Richter M, Piwocka O, Musielak M, Piotrowski I, Suchorska WM, Trzeciak T. From donor to the lab: a fascinating journey of primary cell lines. Front Cell Dev Biol. 2021;9:711381. https://doi.org/10.3389/fcell.2021.711381
25. Miserocchi G, Mercatali L, Liverani C, De Vita A, Spadazzi C, Pieri F, et al. Management and potentialities of primary cancer cultures in preclinical and translational studies. J Transl Med. 2017;15(1):229. https://doi.org/10.1186/s12967-017-1328-z
26. Colella G, Fazioli F, Gallo M, De Chiara A, Apice G, Ruosi C, et al. Sarcoma spheroids and organoids—promising tools in the era of personalized medicine. Int J Mol Sci. 2018;19(2):615. https://doi.org/10.3390/ijms19020615
27. Danilova AB, Nekhaeva TL, Avdonkina NA, Prosekina EA, Blokhina ML, Emelyanova NV, et al. The bank of cell lines of solid tumors of similarly treated patients as the basis of cell modeling in oncology. Materials of the VI St. Petersburg International Oncology Forum “White Nights 2020”. St. Petersburg: Issues of Oncology; 2020. P. 136 (In Russ.).
28. Pham PV, Le HT, Vu BT, Pham VQ, Le PM, Phan NL, et al. Targeting breast cancer stem cells by dendritic cell vaccination in humanized mice with breast tumor: preliminary results. Onco Targets Ther. 2016;9:4441–51. https://doi.org/10.2147/ott.s105239
29. Paradiso F, Serpelloni S, Francis LW, Taraballi F. Mechanical studies of the third dimension in cancer: From 2D to 3D model. Int J Mol Sci. 2021;22(18):10098. https://doi.org/10.3390/ijms221810098
30. Courau T, Bonnereau J, Chicoteau J, Bottois H, Remark R, Assante Miranda L, et al. Cocultures of human colorectal tumor spheroids with immune cells reveal the therapeutic potential of MICA/B and NKG2A targeting for cancer treatment. J Immunother Cancer. 2019;7(1):74. https://doi.org/10.1186/s40425-019-0553-9
31. Gottfried E, Kunz-Schughart LA, Ebner S, Mueller-Klieser W, Hoves S, Andreesen R, et al. Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood. 2006;107(5):2013–21. https://doi.org/10.1182/blood-2005-05-1795
32. Etminan N, Peters C, Lakbir D, Bünemann E, Börger V, Sabel MC, et al. Heat-shock protein 70-dependent dendritic cell activation by 5-aminolevulinic acid-mediated photodynamic treatment of human glioblastoma spheroids in vitro. Br J Cancer. 2011;105(7):961–9. https://doi.org/10.1038/bjc.2011.327
33. Dijkstra KK, Cattaneo CM, Weeber F, Chalabi M, van de Haar J, Fanchi LF, et al. Generation of tumor-reactive T Cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell. 2018;174(6):1586–98.e12. https://doi.org/10.1016/j.cell.2018.07.009
34. Zhuang P, Chiang YH, Fernanda MS, He M. Using spheroids as building blocks towards 3D bioprinting of tumor microenvironment. Int J Bioprint. 2021;7(4):444. https://doi.org/10.18063/ijb.v7i4.444
35. Maharjan S, Cecen B, Zhang YS. 3D immunocompetent organ-on-a-chip models. Small Methods. 2020;4(9):2000235. https://doi.org/10.1002/smtd.202000235
36. Ando Y, Siegler EL, Ta HP, Cinay GE, Zhou H, Gorrell KA, et al. Evaluating CAR-T cell therapy in a hypoxic 3D tumor model. Adv Healthc Mater. 2019;8(5):e1900001. https://doi.org/10.1002/adhm.201900001
37. Frick C, Dettinger P, Renkawitz J, Jauch A, Berger CT, Recher M, et al. Nano-scale microfl uidics to study 3D chemotaxis at the single cell level. PLoS One. 201813(6):e0198330. https://doi.org/10.1371/journal.pone.0198330
38. Parlato S, De Ninno A, Molfetta R, Toschi E, Salerno D, Mencattini A, et al. 3D microfluidic model for evaluating immunotherapy efficacy by tracking dendritic cell behaviour toward tumor cells. Sci Rep. 2017;7(1):1093. https://doi.org/10.1038/s41598-017-01013-x
39. Nekhaeva TL, Chernov AN, Toropova YaG, Gala gudza MM, Baldueva IA. Variety of tumor models for testing antitum treatment activity of substances in mice. Problems in Oncology. 2020;66(4):353–63 (In Russ.).
40. Hardee S, Prasad ML, Hui P, Dinauer CA, Morotti RA. Pathologic characteristics, natural history, and prognostic implications of BRAF V600E mutation in pediatric papillary thyroid carcinoma. Pediatr Dev Pathol. 2017;20(3):206–12. https://doi.org/10.1177/1093526616689628
41. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24(5):541–50. https://doi.org/10.1038/s41591-018-0014-x
42. Kemp CJ. Animal models of chemical carcinogenesis: driving breakthroughs in cancer research for 100 years. Cold Spring Harb Protoc. 2015;2015(10):865–74. https://doi.org/10.1101/pdb.top069906
43. Saito R, Kobayashi T, Kashima S, Matsumoto K, Ogawa O. Faithful preclinical mouse models for better translation to bedside in the field of immuno-oncology. Int J Clin Oncol. 2020;25(5):831–41. https://doi.org/10.1007/s10147-019-01520-z
44. Sprooten J, Ceusters J, Coosemans A, Agostinis P, De Vleeschouwer S, Zitvogel L, et al. Trial watch: dendritic cell vaccination for cancer immunotherapy. Oncoimmunology. 2019;8(11):e1638212. https://doi.org/10.1080/2162402x.2019.1638212
45. Wculek SK, Amores-Iniesta J, Conde-Garrosa R, Khouili SC, Melero I, Sancho D. Effective cancer immunotherapy by natural mouse conventional type-1 dendritic cells bearing dead tumor antigen. J Immunother Cancer. 2019;7(1):100. https://doi.org/10.1186/s40425-019-0565-5
46. Pellegatta S, Poliani PL, Corno D, Menghi F, Ghielmetti F, Suarez-Merino B, et al. Neurospheres enriched in cancer stem-like cells are highly effective in eliciting a dendritic cell-mediated immune response against malignant gliomas. Cancer Res. 2006;66(21):10247–52. https://doi.org/10.1158/0008-5472.can-06-2048
47. Kametani Y, Ohno Y, Ohshima S, Tsuda B, Yasuda A, Seki T, et al. Humanized mice as an effective evaluation system for peptide vaccines and immune checkpoint inhibitors. Int J Mol Sci. 2019;20(24):6337. https://doi.org/10.3390/ijms20246337
48. Spranger S, Frankenberger B, Schendel DJ. NOD/scid IL-2Rg(null) mice: a preclinical model system to evaluate human dendritic cell-based vaccine strategies in vivo. J Transl Med. 2012;10:30. https://doi.org/10.1186/1479-5876-10-30
49. Wang B, Sun C, Wang S, Shang N, Figini M, Ma Q, et al. Image-guided dendritic cell-based vaccine immunotherapy in murine carcinoma models. Am J Transl Res. 2017;9(10):4564–73. PMID: 29118918
50. Mayer AT, Gambhir SS. The immunoimaging toolbox. J Nucl Med. 2018;59(8):1174–82. https://doi.org/10.2967/jnumed.116.185967
51. Novik AV, Girdyuk DV, Nekhaeva TL, Emelyanova NV, Efremova NA, Latipova DKh, et al. Progression prediction model of a solid tumor against the background of drug therapy using artifi cial intelligence methods. Effective Pharmacotherapy. 2022;18(21):6–13 (In Russ.).
52. Dickman LR, Kuang Y. Analysis of tumor-immune dynamics in a delayed dendritic cell therapy model. Chaos. 2020;30(11):113108. https://doi.org/10.1063/5.0006567
53. Pappalardo F, Pennisi M, Ricupito A, Topputo F, Bellone M. Induction of T-cell memory by a dendritic cell vaccine: a computational model. Bioinformatics. 2014;30(13):1884–91. https://doi.org/10.1093/bioinformatics/btu059
54. Lai X, Keller C, Santos G, Schaft N, Dörrie J, Vera J. Multi-level computational modeling of anti-cancer dendritic cell vaccination utilized to select molecular targets for therapy optimization. Front Cell Dev Biol. 2022;9:746359. https://doi.org/10.3389/fcell.2021.746359
55. Meng X, Sun X, Liu Z, He Y. A novel era of cancer/testis antigen in cancer immunotherapy. Int Immunopharmacol. 2021;98:107889. https://doi.org/10.1016/j.intimp.2021.107889
56. Yu J, Sun H, Cao W, Song Y, Jiang Z. Research progress on dendritic cell vaccines in cancer immunotherapy. Exp Hematol Oncol. 2022;11(1):3. https://doi.org/10.1186/s40164-022-00257-2
57. Liu Z, Gao C, Tian J, Ma T, Cao X, Li A. The efficacy of dendritic cell vaccine for newly diagnosed glioblastoma: a meta-analysis of randomized controlled studies. Neurochirurgie. 2021;67(5):433–8. https://doi.org/10.1016/j.neuchi.2021.04.011
58. Chen C, Ma YH, Zhang YT, Zhang F, Zhou N, Wang X, et al. Effect of dendritic cell-based immunotherapy on hepatocellular carcinoma: a systematic review and meta-analysis. Cytotherapy. 2018;20(8):975–89. https://doi.org/10.1016/j.jcyt.2018.06.002
59. Mohammadzadeh M, Shirmohammadi M, Ghojazadeh M, Nikniaz L, Raeisi M, Aghdas SAM. Dendritic cells pulsed with prostate-specific membrane antigen in metastatic castration-resistant prostate cancer patients: a systematic review and meta-analysis. Prostate Int. 2018;6(4):119–25. https://doi.org/10.1016/j.prnil.2018.04.001
60. Handy CE, Antonarakis ES. Sipuleucel-T for the treatment of prostate cancer: novel insights and future directions. Future Oncol. 2018;14(10):907–17. https://doi.org/10.2217/fon-2017-0531
61. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363(5):411–22. https://doi.org/10.1056/nejmoa1001294
62. Kumar C, Kohli S, Chiliveru S, Bapsy PP, Jain M, Suresh Attili VS, et al. A retrospective analysis comparing APCEDEN® dendritic cell immunotherapy with best supportive care in refractory cancer. Immunotherapy. 2017;9(11):889–97. https://doi.org/10.2217/imt-2017-0064
63. Liau LM, Ashkan K, Tran DD, Campian JL, Trusheim JE, Cobbs CS, et al. First results on survival from a large Phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J Transl Med. 2018;16(1):142. https://doi.org/10.1186/s12967-018-1507-6
64. Hong W, Yang B, He Q, Wang J, Weng Q. New insights of CCR7 signaling in dendritic cell migration and inflammatory diseases. Front Pharmacol. 2022;13:841687. https://doi.org/10.3389/fphar.2022.841687
65. Perez CR, De Palma M. Engineering dendritic cell vaccines to improve cancer immunotherapy. Nat Commun. 2019;10(1):5408. https://doi.org/10.1038/s41467-019-13368-y
66. Hlavackova E, Pilatova K, Cerna D, Selingerova I, Mudry P, Mazanek P, et al. Dendritic cell-based immunotherapy in advanced sarcoma and neuroblastoma pediatric patients: anti-cancer treatment preceding monocyte harvest impairs the immunostimulatory and antigen-presenting behavior of DCs and manufacturing process outcome. Front Oncol. 2019;9:1034. https://doi.org/10.3389/fonc.2019.01034
67. Fridman WH, Zitvogel L, Sautès-Fridman C, Kroemer G. The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol. 2017;14(12):717–34. https://doi.org/10.1038/nrclinonc.2017.101
68. Ramesh P, Shivde R, Jaishankar D, Saleiro D, Le Poole IC. A palette of cytokines to measure anti-tumor efficacy of T cell-based therapeutics. Cancers (Basel). 2021;13(4):821. https://doi.org/10.3390/cancers13040821
69. Sabado RL, Balan S, Bhardwaj N. Dendritic cell-based immunotherapy. Cell Res. 2017;27(1):74–95. https://doi.org/10.1038/cr.2016.157
70. Vodyakova MA, Sayfutdinova AR, Melnikova EV, Olefir YuV. Comparison of the world pharmacopoeias’ requirements for the quality of cell lines. BIOpreparations. Prevention, Diagnosis, Treatment. 2020;20(3):159–73 (In Russ.). https://doi.org/10.30895/2221-996X-2020-20-3-159-173
Supplementary files
Review
For citations:
Nekhaeva T.L., Kamaletdinova A.A., Lutfullin M.F., Tabanskaya T.V. Current approaches to quality assessment, non-clinical and clinical studies of dendritic cell vaccines in oncology. Biological Products. Prevention, Diagnosis, Treatment. 2023;23(2):148-161. (In Russ.) https://doi.org/10.30895/2221-996X-2023-23-2-148-161