An Outbreak of a New Infectious Disease COVID-19: β-coronaviruses as a Threat to Global Healthcare
https://doi.org/10.30895/2221-996X-2020-20-1-6-20
Abstract
Coronaviruses are the largest group of known positive-strand RNA viruses. Coronavirus infection can affect various animal species, as well as humans. Over the past two decades, coronaviruses have caused epidemic outbreaks of two respiratory diseases: the Middle East Respiratory Syndrome and Severe Acute Respiratory Syndrome. At the end of 2019, a new type of virus was detected in China. The virus has been spread by humantohuman transmission and has caused a viral pneumonia outbreak. The emergence of a new coronavirus proves that the diseases caused by this group of viruses pose a threat to global health due to the potential for a pandemic, and, therefore, need careful monitoring. The objective of the study was to analyse the current epidemic situation for the new coronavirus infection (COVID-19) caused by SARS-CoV-2, taking into account previous outbreaks of infections caused by MERS-CoV and SARS-CoV β-coronaviruses which pose the greatest threat to human health. The review briefly describes two epidemic outbreaks caused by SARS-CoV (2002–2004) and MERS-CoV (2012–present), summarises the current epidemic situation for the new SARS-CoV-2 coronavirus, describes the main restrictive measures undertaken to prevent the spread of infection in Russia. The paper considers aspects of potential specific therapy and the development of prophylactic vaccines against the new coronavirus infection. The review concludes that SARS-CoV-2 has pandemic potential and that new strains of β-coronaviruses are likely to cause outbreaks in the future. The paper points to the need for careful monitoring of the disease and conducting preventive anti-epidemic measures to curb the spread of infection.
Keywords
About the Authors
D. V. GorenkovRussian Federation
Dmitry V. Gorenkov
8/2 Petrovsky Blvd, Moscow 127051
L. M. Khantimirova
Russian Federation
Leysan M. Khantimirova
8/2 Petrovsky Blvd, Moscow 127051
V. A. Shevtsov
Russian Federation
Vladimir A. Shevtsov, Cand. Sci. (Med.)
8/2 Petrovsky Blvd, Moscow 127051
A. V. Rukavishnikov
Russian Federation
Andrey V. Rukavishnikov, Cand. Sci. (Biol.)
8/2 Petrovsky Blvd, Moscow 127051
V. A. Merkulov
Russian Federation
Vadim A. Merkulov, Dr. Sci. (Med.), Professor
8/2 Trubetskaya St., Moscow 119991,
8/2 Petrovsky Blvd, Moscow 127051
Yu. V. Olefir
Russian Federation
Yuri V. Olefir, Dr. Sci. (Med.), Senior Research Associate
8/2 Petrovsky Blvd, Moscow 127051
References
1. Chen Y, Guo D. Molecular mechanisms of coronavirus RNA capping and methylation. Virol Sin. 2016;31(3):3–11. https://doi.org/10.1007/s12250-016-3726-4
2. Cui J, Li F, Shi Z. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17:181–92. https://doi.org/10.1038/s41579-018-0118-9
3. Song Z, Xu Y, Bao L, Zhang L, Yu P, Qu Y, et al. From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses. 2019;11(1):59. https://doi.org/10.3390/v11010059
4. Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, et al. Severe acute respiratory syndromerelated coronavirus: The species and its viruses — a statement of the Coronavirus Study Group [published online ahead of print, 2020 Feb 07]. bioRxiv. 2020.02.07.937862. https://doi.org/10.1101/2020.02.07.937862
5. Ayittey FK, Ayittey MK, Chiwero NB, Kamasah JS, Dzuvor C. Economic impacts of Wuhan 2019-nCoV on China and the world [published online ahead of print, 2020 Feb 12]. J Med Virol. 2020. https://doi.org/10.1002/jmv.25706
6. Woo PCY, Lau SKP, Lam CSF, Lau CCY, Tsang AKL, Lau JHN, et al. Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J Virol. 2012;86(7):3995–4008. https://doi.org/10.1128/JVI.06540-11
7. Geng L, Fan Y, Lai Y, Han T, Li Z, Zhou P, et al. Coronavirus infections and immune responses. J Med Virol. 2020;92:424– 32. https://doi.org/10.1002/jmv.25685
8. Chen Yu, Qianyun Liu, Guo Deyin. Emerging coronaviruses: genome structure, replication, and pathogenesis [published online ahead of print, 2020 Jan 22]. J Med Virol. 2020;92(4):418–23. https://doi.org/10.1002/jmv.25681
9. Shchelkanov MY, Kolobukhina LV, Lvov DK. Human coronaviruses (Nidovirales, Coronaviridae): increased level of epidemic danger. Lechashchii vrach = Therapist. 2013;(10):49–54 (In Russ.)
10. Stovba LF, Lebedev VN, Petrov AA, Ruchko VM, Kulish VS, Borisevich SV. Emerging coronavirus which gives rise to the disease in humans. Problemy osobo opasnykh infektsii = Problems of Particularly Dangerous Infections. 2015;(2):68–74 (In Russ.)
11. Du L, Yang Y, Zhou Y, Lu L, Li F, Jiang S. MERS-CoV spike protein: a key target for antivirals. Expert Opin Ther Targets. 2017;21(2):131–43. https://doi.org/10.1080/14728222.2017.1271415
12. Du L, He Y, Zhou Y, Liu S, Zheng BJ, Jiang S. The spike protein of SARS-CoV — A target for vaccine and therapeutic development. Nat Rev Microbiol. 2009;7;226–36. https://doi.org/10.1038/nrmicro2090
13. Beniac DR, Andonov A, Grudeski E, Booth TF. Architecture of the SARS coronavirus prefusion spike. Nature Struct Mol Biol. 2006;13(8):751–2. https://doi.org/10.1038/nsmb1123
14. Delmas B, Laude H. Assembly of coronavirus spike protein into trimers and its role in epitope expression. J Virol. 1990;64(11):5367–75.
15. Nal B, Chan C, Kien F, Siu L, Tse J, Chu K, et al. Differential maturation and subcellular localization of severe acute respiratory syndrome coronavirus surface proteins S, M and E. J Gen Virol. 2005;86(5):1423–34. https://doi.org/10.1099/10.1099/vir.0.80671-0
16. Neuman BW, Kiss G, Kunding AH, Bhella D, Baksh MF, Connelly S, et al. A structural analysis of M protein in coronavirus assembly and morphology. J Struct Biol. 2011;174(1):11–22. https://doi.org/10.1016/j.jsb.2010.11.021
17. DeDiego ML, Alvarez E, Almazan F, Rejas MT, Lamirande E, Roberts A, et al. A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo. J Virol. 2007;81(4):1701–13. https://doi.org/10.1128/JVI.01467-06
18. Nieto-Torres JL, DeDiego ML, Verdia-Baguena C, JimenezGuardeno JM, Regla-Nava JA, Fernandez-Delgado R, et al. Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLoS Pathog. 2014;10(5):e1004077. https://doi.org/10.1371/journal.ppat.1004077
19. Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol. 2015;1282:1–23. https://doi.org/10.1007/978-1-4939-24387_1
20. Chang CK, Sue SC, Yu TH, Hsieh CM, Tsai CK, Chiang YC, et al. Modular organization of SARS coronavirus nucleocapsid protein. J Biomed Sci. 2006;13(1):59–72.
21. Hurst KR, Koetzner CA, Masters PS. Identification of in vivointeracting domains of the murine coronavirus nucleocapsid protein. J Virol 2009;83(14):7221–34. https://doi.org/10.1128/JVI.00440-09
22. Cui L, Wang H, Ji Y, Yang J, Xu S, Huang X, et al. The nucleocapsid protein of coronaviruses acts as a viral suppressor of RNA silencing in mammalian cells. J Virol. 2015;89(17):9029–43. https://doi.org/10.1128/JVI.01331-15
23. Peiris JS, Lai ST, Poon LL, Guan Y, Yam LY, Lim W, et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet. 2003;361(9366):1319–25. https://doi.org/10.1016/S0140-6736(03)13077-2
24. Drosten C, Gunther S, Preiser W, van der Werf S, Brodt HR, Becker S, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003;348(20):1967–76. https://doi.org/10.1056/NEJMoa030747
25. Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J. Med. 2003;348:1953– 66. https://doi.org/10.1056/NEJMoa030781
26. Hui DS, Zumla A. Severe acute respiratory syndrome. Historical, epidemiologic, and clinical features. Infect Dis Clin North Am. 2019;33(4):869–89. https://doi.org/10.1016/j.idc.2019.07.001
27. Hui DS, Azhar EI, Madani TA, Ntoumi F, Kock R, Dar O, et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health — The latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infec Dis. 2020;91:264–6. https://doi.org/10.1016/j.ijid.2020.01.009
28. Donnelly CA, Ghani AC, Leung GM, Hedley AJ, Fraser C, Riley S, et al. Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong. Lancet. 2003;361(9371):1761–6. https://doi.org/10.1016/S0140-6736(03)13410-1
29. Anderson LJ, Tong S. Update on SARS research and other possibly zoonotic coronaviruses. Int J Antimicrob Agents. 2010;36(Suppl 1):S21–5. https://doi.org/10.1016/j.ijantimicag.2010.06.016
30. Song HD, Tu CC, Zhang GW, Wang SY, Zheng K, Lei LC, et al. Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proc Natl Acad Sci U S A. 2005;102(7):2430–5. https://doi.org/10.1073/pnas.0409608102
31. Wang M, Yan M, Xu H, Liang W, Kan B, Zheng B, et al. SARS-CoV infection in a restaurant from palm civet. Emerg Infect Dis. 2005;11(12):1860–5. https://dx.doi.org/10.3201/eid1112.041293
32. Martina BE, Haagmans BL, Kuiken T, Fouchier RA, Rimmelzwaan GF, Van Amerongen G, et al. SARS virus infection of cats and ferrets. Nature. 2003;425(6961):915. https://doi.org/10.1038/425915a
33. Huang YW, Dickerman AW, Pineyro P, Li L, Fang L, Kiehne R, et al. Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States. MBio. 2013;4(5):e00737–13. https://doi.org/10.1128/mBio.00737-13
34. Liu C, Tang J, Ma Y, Liang X, Yang Y, Peng G, et al. Receptor usage and cell entry of porcine epidemic diarrhea coronavirus. J Virol. 2015;89(11):6121–5. https://doi.org/10.1128/JVI.00430-15
35. Simas PV, Barnabe AC, Duraes-Carvalho R, Neto DF, Caserta LC, Artacho L, et al. Bat coronavirus in Brazil related to appalachian ridge and porcine epidemic diarrhea viruses. Emerg Infect Dis. 2015;21(4):729–31. https://doi.org/10.3201/eid2104.141783
36. Lacroix A, Duong V, Hul V, San S, Davun H, Omaliss K, et al. Genetic diversity of coronaviruses in bats in Lao PDR and Cambodia. Infect Genet Evol. 2017;48:10–8. https://doi.org/10.1016/j.meegid.2016.11.029
37. Muller MA, Corman VM, Jores J, Meyer B, Younan M, Liljander A, et al. MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983–1997. Emerg Infect Dis. 2014;20(12):2093–5. https://doi.org/10.3201/eid2012.141026
38. Meyerholz DK, Lambertz AM, McCray PB. Dipeptidyl peptidase 4 distribution in the human respiratory tract: implications for the Middle East Respiratory Syndrome. Am J Pathol. 2016;186(1):78–86. https://doi.org/10.1016/j.ajpath.2015.09.014
39. Widagdo W, Raj VS, Schipper D, Kolijn K, van Leenders GJLH, Bosch BJ, et al. Differential expression of the Middle East respiratory syndrome coronavirus receptor in the upper respiratory tracts of humans and dromedary camels. J Virol. 2016;90(9):4838–42. https://doi.org/10.1128/JVI.02994-15
40. Mackay IM, Arden KE. MERS coronavirus: diagnostics, epidemiology and transmission. Virol. J. 2015;12:222. https://doi.org/10.1186/s12985-015-0439-5
41. Alraddadi BM, Watson JT, Almarashi GR, Abedi GR, Turkistani A, Sadran M, et al. Risk factors for primary Middle East respiratory syndrome coronavirus illness in humans, Saudi Arabia, 2014. Emerg Infect Dis. 2016;22(1):49–55. https://doi.org/10.3201/eid2201.151340
42. Yin Y, Wunderink RG. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology. 2018;23(2):130–7. https://doi.org/10.1111/resp.13196
43. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin [published online ahead of print, 2020 Feb 03]. Nature. 2020. https://doi.org/10.1038/s41586-0202012-7
44. Letko M, Munster V. Functional assessment of cell entry and receptor usage for lineage B β-coronaviruses, including 2019-nCoV [published online ahead of print, 2020 Jan 22]. bioRxiv. 2020. https://doi.org/10.1101/2020.01.22.915660
45. Hoffmann M, Kleine-Weber H, Krueger N, Muller M, Drosten C, Pohlmann S. The novel coronavirus 2019 (2019nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells [published online ahead of print, 2020 Jan 31]. bioRxiv. 2020. https://doi.org/10.1101/2020.01.31.929042
46. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China [published online, 2020 Feb 07]. JAMA. https://doi.org/10.1001/jama.2020.1585
47. Li X, Zai J, Wang X, Li Y. Potential of large “first generation” human-to-human transmission of 2019-nCoV [published online ahead of print, 2020 Jan 30]. J Med Virol. 2020;10.1002/ jmv.25693. https://doi.org/10.1002/jmv.25693
48. Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV) [published online ahead of print, 2020 Jan 28]. BioSci Trends. 2020;10.5582/bst.2020.01020. https://doi.org/10.5582/bst.2020.01020
49. Wassenaar TM, Zou Y. 2019_nCoV/SARS-CoV-2: Rapid classification of betacoronaviruses and identification of traditional Chinese medicine as potential origin of zoonotic coronaviruses [published online ahead of print, 2020 Feb 14]. Lett Appl Microbiol. 2020;10.1111/lam.13285. https://doi.org/10.1111/lam.13285
50. Kucharski AJ, Althaus CL. The role of superspreading in Middle East respiratory syndrome coronavirus (MERS-CoV) transmission. Euro Surveill. 2015;20(25):14–8. https://doi.org/10.2807/1560-7917.ES2015.20.25.21167
51. Chen J. Pathogenicity and transmissibility of 2019-nCoV— a quick overview and comparison with other emerging viruses [published online ahead of print, 2020 Feb 4]. Microbes Infect. 2020;S1286-4579(20)30026-5. https://doi.org/10.1016/j.micinf.2020.01.004
52. Cheng ZJ, Shan J. 2019 Novel coronavirus: where we are and what we know [published online ahead of print, 2020 Feb 18]. Infection. 2020;10.1007/s15010-020-01401-y. https://doi.org/10.1007/s15010-020-01401-y
53. Liu Y, Gayle AA, Wilder-Smith A, Rocklov J. The reproductive number of COVID-19 is higher compared to SARS coronavirus [published online ahead of print, 2020 Feb 13]. J Travel Med. 2020;taaa021. https://doi.org/10.1093/jtm/taaa021
54. Hui DS, Memish ZA, Zumla A. Severe acute respiratory syndrome vs. the Middle East respiratory syndrome. Curr Opin Pulm Med. 2014;20(3):233–41. https://doi.org/10.1097/MCP.0000000000000046
55. Rasmussen SA, Watson AK, Swerdlow DL. Middle East respiratory syndrome (MERS). Microbiol Spectr. 2016;4(3):10.1128/microbiolspec.EI10-0020-2016. https://doi.org/10.1128/microbiolspec.EI10-0020-2016
56. Leung GM, Chung PH, Tsang T, Lim W, Chan SK, Chau P, et al. SARS-CoV antibody prevalence in all Hong Kong patient contacts [published correction appears in Emerg. Infect. Dis. 2004 Oct;10(10):1890]. Emerg. Infect. Dis. 2004;10(9):1653–6. https://doi.org/10.3201/eid1009.040155
57. Badawi A, Ryoo SG. Prevalence of comorbidities in the Middle East respiratory syndrome coronavirus (MERS-CoV): a systematic review and meta-analysis. Int J Infect Dis. 2016;49:129–33. https://doi.org/10.1016/j.ijid.2016.06.015
58.
Review
For citations:
Gorenkov D.V., Khantimirova L.M., Shevtsov V.A., Rukavishnikov A.V., Merkulov V.A., Olefir Yu.V. An Outbreak of a New Infectious Disease COVID-19: β-coronaviruses as a Threat to Global Healthcare. BIOpreparations. Prevention, Diagnosis, Treatment. 2020;20(1):6-20. (In Russ.) https://doi.org/10.30895/2221-996X-2020-20-1-6-20