Reference standards for evaluating the potency of human immunoglobulin preparations: Literature review
https://doi.org/10.30895/2221-996X-2025-25-4-413-427
Abstract
INTRODUCTION. Pharmaceutical production uses reference standards as an integral part of metrological support for analytical methods. A systematic literature analysis on standardisation of human immunoglobulin preparations, particularly specific and special-purpose ones, will allow evaluating the metrological support in the Russian Federation and identifying new approaches to obtaining and using reference standards to assess specific potency.
AIM. This study aimed to analyse published data on the range of reference standards used to evaluate potency of human immunoglobulins in the Russian Federation and abroad.
DISCUSSION. PubMed, eLIBRARY.RU, and ConsultantPlus® legal research system showed that the list of international reference standards includes Rh0(D), hepatitis B, tetanus, staphylococcal and cytomegalovirus infections, rabies, and smallpox human immunoglobulins. No reference standard is available for human immunoglobulin against tick-borne encephalitis, since no specific human immunoglobulin is produced in the European Union. There is an absolute dependence on the import of international reference standards for assessing the potency of human hepatitis B, cytomegalovirus, and rabies immunoglobulins. Reference standards are typically obtained from ready-to-use batches of medicinal products and then stabilised, bottled under sterile conditions, and lyophilised. The Register of the State Pharmacopoeia of the Russian Federation includes reference standards for Rh0(D), anti-tetanus serum, and staphylococcal immunoglobulin. Unlike international reference standards, pharmacopoeial standards are produced as solutions, thus significantly reducing antibody stability. For pharmacopoeial reference standards, statistical uncertainty of the certified value is established in the Russian Federation; however, while certifying international reference standards, their certification is not obligatory. According to literature analysis, the key requirements for reference standards are stability and composition / properties similar to standardised preparations. Russian and foreign certification requirements of reference standards have certain differences. The number of Russian reference standards based on human immunoglobulin G is limited, since they are mostly obtained from horse blood serum.
CONCLUSIONS. Russian pharmaceutical industry shows a deficit of national reference standards used for assessing specific potency of human immunoglobulins and donor plasma for their production. Thus, such reference standards should be released as lyophilisates and certified in international units, with an evaluation of statistical uncertainty of the antibody content.
Keywords
About the Authors
E. S. KormshchikovaRussian Federation
Elena S. Kormshchikova, Сand. Sci. (Biol.)
72 Krasnoarmeyskaya St., Kirov 610027
E. N. Kalinina
Russian Federation
Elena N. Kalinina
72 Krasnoarmeyskaya St., Kirov 610027
E. A. Konovalova
Russian Federation
Ekaterina A. Konovalova
72 Krasnoarmeyskaya St., Kirov 610027
E. V. Rosina
Russian Federation
Elena V. Rosina
72 Krasnoarmeyskaya St., Kirov 610027
N. S. Vildanova
Russian Federation
Natalia S. Vildanova
72 Krasnoarmeyskaya St., Kirov 610027
S. E. Ziganshina
Russian Federation
Svetlana E. Ziganshina
72 Krasnoarmeyskaya St., Kirov 610027
K. A. Vorobiev
Russian Federation
Konstantin A. Vorobiev, Dr. Sci. (Biol.)
72 Krasnoarmeyskaya St., Kirov 610027
I. V. Paramonov
Russian Federation
Igor V. Paramonov, Dr. Sci. (Med.)
72 Krasnoarmeyskaya St., Kirov 610027
References
1. Borisevich IV, Kudasheva EY, Ivanov VB, Lebedinskaya EV. Specific human immunoglobulin preparations for treatment and prevention of infectious diseases. Immunologiya. 2017;38(6):320–6 (In Russ.). EDN: VTMTSX
2. Smolyanova TI, Bagaeva NS, Kolganova MA, et al. Phase I pharmacokinetics study of drug «COVID-globulin» (specific human immunoglobulin against COVID-19). Drug Development & Registration. 2022;11(2):180–6 (In Russ.). https://doi.org/10.33380/2305-2066-2022-11-2-180-186
3. Vildanova NS, Kormshchikova ES, Kalinina EN, et al. Human anti-D immunoglobulin preparations: Potency standardisation milestones. Biological Products. Prevention, Diagnosis, Treatment. 2022;22(3):241–8 (In Russ.). https://doi.org/10.30895/2221-996X-2022-22-3-241-248
4. Shaz BH, Hillyer CD, Reyes GM, eds. Transfusion medicine and hemostasis: clinical and laboratory aspect. 3rd ed. Philadelphia, PA: Elsevier; 2018.
5. Contreras M, Kumpel B, Olovnikova N. Anti-D prophylaxis should protect all newborns from haemolytic disease, regardless of their country of residence. Vox Sang. 2024;119(12):1221–2. https://doi.org/10.1111/vox.13745
6. El-Habil MK. Anti-D immunoglobulin versus immunoglobulin G for the treatment of acute immune thrombocytopenia in children: a 10-year retrospective study. Lancet. 2021;398(Suppl 1):S25. https://doi.org/10.1016/S0140-6736(21)01511-7
7. Kornilova OG, Khusnatdinova EA, Konovalova ES, Volkova RA. Evaluation of the stability of performance of the analytical test method used for determination of anticomplementary activity of human immunoglobulin preparations. BIOpreparations. Prevention, Diagnostics, Treatment. 2019;19(2):118–23 (In Russ.). https://doi.org/10.30895/2221-996X-2019-19-2-118-123
8. Gegechkori VI, Shatilina AA, Shulga NA, et al. Biological reference materials: Topical issues of development and certification procedure. Measurement Standards. Reference Materials. 2023;19(3):21–9 (In Russ.). https://doi.org/10.20915/2077-1177-2023-19-3-21-29
9. Volkova RA, Fadeikina OV, Ustinnikova OB, et al. Current problems with the standard samples of medicines in the Russian Federation. Farmatsiya (Pharmacy). 2020;69(2):5–11 (In Russ.). https://doi.org/10.29296/25419218-2020-02-01
10. Kormshchikova ES, Rosina EV, Vorobyov KA, Paramonov IV. Obtaining a stable form of a standard sample of human IgG antibodies to tick-borne encephalitis virus. Russian Journal of Biotechnology. 2021;37(2):42–52 (In Russ.). https://doi.org/10.21519/0234-2758-2021-37-3-42-52
11. Gupta S, Upadhyay K, Schöneich C, Rathore AS. Impact of various factors on the kinetics of non-enzymatic fragmentation of a monoclonal antibody. Eur J Pharm Biopharm. 2022;178:131–9. https://doi.org/10.1016/j.ejpb.2022.08.002
12. Jeon H, Hayes JM, Mok KH. In silico analysis of therapeutic antibody aggregation and the influence of glycosylation. Methods Mol Biol. 2022;2370:169–83. https://doi.org/10.1007/978-1-0716-1685-7_8
13. Liu B, Zhou X. Freeze-drying of proteins. Methods Mol Biol. 2021;2180:683–702. https://doi.org/10.1007/978-1-0716-0783-1_37
14. Generalov SV, Komissarov AV, Abramova EG, et al. Lyophylization of production Rabies virus strains. Russian Journal of Biotechnology. 2024;40(1):84–92 (In Russ.). https://doi.org/10.56304/S0234275824010046
15. Fadeikina OV, Volkova RA. Elaboration of certification procedures for reference standards of biological drugs. Pharm Chem J. 2017;51:716–21. https://doi.org/10.1007/s11094-017-1680-6
16. Fadeikina OV, Volkova RA, Karpova EV. Statistical analysis of results from the attestation of biological standard samples: Use of the Mann–Whitney test. Pharm Chem J. 2019;53:655–9. https://doi.org/10.1007/s11094-019-02057-1
17. Fox B, Sharp G, Atkinson E, et al. The third international standard for anti-D immunoglobulin: International collaborative study to evaluate candidate preparations. Vox Sang. 2019;114(7):740–8. https://doi.org/10.1111/vox.12822
18. Jouette S, Le Tallec D, Niewiadomska-Cimicka A, et al. Study for the establishment of the Ph. Eur. Human Anti-D immunoglobulin biological reference preparation batch 2. Pharmeur Bio Sci Notes. 2025;2025:1–8. PMID: 39930871
19. Fox B, Hockley J, Studholme L. The British standard for (European conformity [CE] marked) Anti-D: Its rarely discussed but important role in quantitating anti-D in patient plasma. Transfus Med. 2020;30(1):75–7. https://doi.org/10.1111/tme.12649
20. Shvedova EV, Klepikova AG, Fadeikina OV, et al. Development of a pharmacopoeia standard for the quantitative determination of the activity of human immunoglobulin antirhesus Rho(D). Immunologiya. 2023;44(3):358–67 (In Russ.). https://doi.org/10.33029/1816-2134-2023-44-3-358-367
21. Shvedova EV, Kudasheva EY, Klimov VI. Methods for evaluating the specific activity of preparations of human antirhesus Rho(D): current status of the problem. Immunologiya. 2020;41(3):256–61 (In Russ.). https://doi.org/10.33029/0206-4952-2020-41-3-256-261
22. Kalinina EN, Vildanova NS, Kormshchikova ES, et al. Determination of quality criteria for candidate standard for anti-D immunoglobulin. Siberian Scientific Medical Journal. 2023;43(6):90–100 (In Russ.). https://doi.org/10.18699/SSMJ20230611
23. Ferguson M, Yu MW, Heath A. Calibration of the second International Standard for hepatitis B immunoglobulin in an international collaborative study. Vox Sang. 2010;99(1):77–84. https://doi.org/10.1111/j.1423-0410.2010.01314.x
24. Kanev AN, Yudina IV, Cherepanova NS, et al. Method for making serum panel for evaluation of antibodies to hepatitis B virus. Patent of the Russian Federation No. 2367960; 2009 (In Russ.). EDN: YZCKXD
25. Konovalova EA, Rosina EV, Kalinina EN, et al. Obtaining candidates for a standard sample of human immunoglobulin against hepatitis B. In: Proceedings of the Scientific and Practical Conference of Young Scientists and Specialists “Topical Issues of Transfusiology and Oncohematology”. Kirov; 2024. P. 43–52 (In Russ.). EDN: LNORWG
26. Bragina EA, Stepanova TF, Plyshevsky GV, Katin AA. Comparative characteristic of the effectiveness of detecting tick-borne encephalitis antibodies in blood serums of people using immunoenzyme (ELISA) and antibody-mediated (RTGA) methods. ZNiSO. 2017;12(297):40–3 (In Russ.). EDN: XIMOAD
27. Kelly PH, Zhang P, Dobler G, et al. Global seroprevalence of tick-borne encephalitis antibodies in humans, 1956-2022: a literature review and meta-analysis. Vaccines (Basel). 2024;12(8):854. https://doi.org/10.3390/vaccines12080854
28. Steininger P, Ensser A, Knöll A, Korn K. Results of tick-borne encephalitis virus (TBEV) diagnostics in an endemic area in Southern Germany, 2007 to 2022. Viruses. 2023;15(12):2357. https://doi.org/10.3390/v15122357
29. Litzba N, Zelená H, Kreil TR, et al. Evaluation of different serological diagnostic methods for tick-borne encephalitis virus; enzyme-linkedimmunosorbent, immunotluorescence, and neutralization assay. Vector Borne Zoonotic Dis. 2014;14(2):149–59. https://doi.org/10.1089/vbz.2012.1287
30. Kormshchikova ES, Rosina EV, Vorobiev КА, et al. Method for producing a standard sample of human IgG antibody content to tick-borne encephalitis virus. Patent of the Russian Federation No. 2735782; 2020 (In Russ.). EDN: RJCCRK
31. Wu Y, Liu X, Akhgar A, et al. Prevalence of IgG and neutralizing antibodies against Staphylococcus aureus alpha-toxin in healthy human subjects and diverse patient populations. Infect Immun. 2018;86(3):e00671-17. https://doi.org/10.1128/IAI.00671-17
32. Rosina EV, Konovalova EA, Ziganshina SE, et al. Selection of the component composition of a candidate for a standard sample of human antistaphylococcal immunoglobulin. In: Proceedings of the International Scientific and Practical Forum of Young Scientists and Specialists “Ilyinsky Readings”. Moscow; 2025. P. 280–2 (In Russ.). EDN: IOOSAS
33. Stickings P, Tierney R, Hockley J, et al. Collaborative study for the establishment of Ph. Eur. Biological Reference Preparation for Human tetanus immunoglobulin batch 2. Pharmeur Bio Sci Notes. 2024;2024:1–11. PMID: 38252512
34. Abramova EG, Lobovikova OA, Shulgina IV, et al. Development of quality control sample to assess specific activity of anti-rabies immunoglobulin obtained from equine blood serum. Drug Development & Registration. 2017;21(4):160–4 (In Russ.). EDN: ZTWVDT
35. Savenkova AA, Generalov SV, Abramova EG, et al. Current state of passive Rabies immunoprophylaxis. Problems of Biological Medical and Pharmaceutical Chemistry. 2025;28(2):31–9 (In Russ.). https://doi.org/10.29296/25877313-2025-02-05
36. Gavrilova EV, Maksyutov RA, Shchelkunov SN. Orthopoxvirus infections: Epidemiology, clinical picture, diagnostics (scientific review). Problems of Particularly Dangerous Infections. 2013;(4):82–8 (In Russ.). https://doi.org/10.21055/0370-1069-2013-4-82-88
37. Miescher SM, Huber TM, Kühne M, et al. In vitro evaluation of cytomegalovirus-specific hyperimmune globulins vs. standard intravenous immunoglobulins. Vox Sang. 2015;109(1):71–8. https://doi.org/10.1111/vox.12246
38. Huang Y, Guo X, Song Q, et al. Cytomegalovirus shedding in healthy seropositive female college students: A 6-month longitudinal study. J Infect Dis. 2018;217(7):1069–73. https://doi.org/10.1093/infdis/jix679
39. Kudasheva EYu, Israfilov AG, Zagidullin NV, Khabibullina VV. Development of an anticytomegalovirus immunoglobulin preparation for intravenous administration. BIOpreparats. Prevention, Diagnosis, Treatment. 2010;3(39):51–2 (In Russ.). EDN: REFPZN
Supplementary files
Review
For citations:
Kormshchikova E.S., Kalinina E.N., Konovalova E.A., Rosina E.V., Vildanova N.S., Ziganshina S.E., Vorobiev K.A., Paramonov I.V. Reference standards for evaluating the potency of human immunoglobulin preparations: Literature review. Biological Products. Prevention, Diagnosis, Treatment. 2025;25(4):413-427. (In Russ.) https://doi.org/10.30895/2221-996X-2025-25-4-413-427




























