Development of an enzyme-linked immunosorbent assay test system for quantifying Chikungunya virus E2 protein and calculating the mass of whole-virion antigen in culture fluid samples
https://doi.org/10.30895/2221-996X-2025-632
Abstract
INTRODUCTION. In recent years, Chikungunya virus (CHIKV) has spread in many parts of the world and has caused large-scale outbreaks with serious economic and social consequences. To improve the effectiveness of CHIKV control measures, it is necessary to develop and optimise diagnostic methods applicable not only to patient serum samples but also to mosquito samples (to identify and eliminate the foci of infection). In addition, it is important to determine antigens in culture fluid samples taken at various stages in the development and production of CHIKV vaccines.
AIM. This study aimed to develop a quantitative one-step sandwich enzyme-linked immunosorbent assay (ELISA) test system for detecting CHIKV E2 protein and a procedure for calculating the mass of whole-virion antigen in culture fluid samples.
MATERIALS AND METHODS. The study focused on two mouse monoclonal antibodies, purified CHIKV (Nika21 strain, GenBank ID: PQ673601), and recombinant CHIKV E2 protein. The sensitivity of ELISA was compared with that of real-time quantitative reverse transcription polymerase chain reaction (real-time RT-qPCR). The comparison used culture fluid samples collected at different time points after infection of Vero cells with CHIKV (18, 24, 46, and 72 h). The main analytical and technical characteristics of the ELISA test system developed were determined in accordance with GOST 51352-2013.
RESULTS. The sensitivity of the assay was not less than 0.625 ng/mL, and its coefficient of variation was not more than 3.56%. The recovery of the assay was 100%. The assay demonstrated an acceptable linearity of 90–110% in the concentration range of 1.5–16 ng/mL. The specificity of the assay was 100%, as no cross-reactivity was observed with samples containing dengue, yellow fever, Sindbis, rubella, and West Nile viruses. The ELISA test system developed in this study and real-time RT-qPCR showed similar results (1.06 and 1.09 μg/mL, respectively) in calculating the mass of whole-virion antigen in culture fluid samples with the use of a conversion factor.
CONCLUSIONS. A simple, specific, and sensitive ELISA test system was developed for the quantitative determination of CHIKV E2 protein in culture fluid samples (and for rapid testing of mosquito samples). The authors offered a method for calculating the mass of whole-virion antigen from the amount of E2 protein (ELISA) and the quantity of genomic equivalents (real-time RT-qPCR). The study demonstrated a strong negative correlation between optical density values obtained using ELISA and cycle threshold values derived from real-time RT-qPCR.
Keywords
About the Authors
B. TahhanSyrian Arab Republic
Bana Tahhan
78 Vernadsky Ave, Moscow 119454, Russian Federation;
12212 Aleppo, Syrian Arab Republic
L. N. Pritvorova
Russian Federation
Lyudmila N. Pritvorova, Cand. Sci. (Med.)
5A Maly Kazenny Ln., Moscow 105064
T. G. Samartseva
Russian Federation
Tatiana G. Samartseva
5A Maly Kazenny Ln., Moscow 105064
S. A. Kedik
Russian Federation
Stanislav A. Kedik, Dr. Sci. (Tech.), Prof.
78 Vernadsky Ave, Moscow 119454
A. S. Oksanich
Russian Federation
Alexey S. Oksanich, Cand. Sci. (Biol.)
5A Maly Kazenny Ln., Moscow 105064
References
1. Moizéis RN, Fernandes TA, Guedes PM, Pereira HW, Lanza DC, Azevedo JW, et al. Chikungunya fever: A threat to global public health. Pathog Glob Health. 2018;112(4):182–94. https://doi.org/10.1080/20477724.2018.1478777
2. de Souza WM, de Lima ST, Mello LM, Candido DS, Buss L, Whittaker C, et al. Spatiotemporal dynamics and recurrence of chikungunya virus in Brazil: An epidemiological study. Lancet Microbe. 2023;4(5):e319–29. https://doi.org/10.1016/S2666-5247(23)00033-2
3. Andrew A, Navien TN, Yeoh, TS, Citartan M, Mangantig E, Sum MS, Tang TH. Diagnostic accuracy of serological tests for the diagnosis of Chikungunya virus infection: A systematic review and meta-analysis. PLoS Negl Trop Dis. 2022;16(2):e0010152. https://doi.org/10.1371/journal.pntd.0010152
4. Vu DM, Jungkind D, LaBeaud AD. Chikungunya virus. Clin Lab Med. 2017;37(2):371–82. https://doi.org/10.1016/j.cll.2017.01.008
5. Kendall C, Khalid H, Müller M, Banda DH, Kohl A, Merits A, et al. Structural and phenotypic analysis of Chikungunya virus RNA replication elements. Nucleic Acids Res. 2019;47(17):9296–312. https://doi.org/10.1093/nar/gkz640
6. Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog. 2007;3(12):e201. https://doi.org/10.1371/journal.ppat.0030201
7. Tsetsarkin KA, McGee CE, Volk SM, Vanlandingham DL, Weaver SC, Higgs S. Epistatic roles of E2 glycoprotein mutations in adaption of chikungunya virus to Aedes albopictus and Ae. aegypti mosquitoes. PloS One. 2009;4(8):e6835. https://doi.org/10.1371/journal.pone.0006835
8. Deeba F, Haider MS, Ahmed A, Tazeen A, Faizan MI, Salam N, et al. Global transmission and evolutionary dynamics of the Chikungunya virus. Epidemiol Infect. 2020;148:e63. https://doi.org/10.1017/S0950268820000497
9. Montalvo ZFG, Reyes-Sandoval A, Kim YC. Chikungunya virus: Priority pathogen or passing trend? Vaccines. 2023;11(3):568. https://doi.org/10.3390/vaccines11030568
10. Morrison TE. Reemergence of chikungunya virus. J Virol. 2014;88(20):11644–7. https://doi.org/10.1128/jvi.01432-14
11. Ingoba LL, Adedoja A, Peko SM, Vairo F, Haider N, Kock R, Ntoumi F. Diagnosis of Chikungunya virus in febrile patients from a malaria holoendemic area. Int J Infect Dis. 2021;109:247–52. https://doi.org/10.1016/j.ijid.2021.06.043
12. Dayakar S, Goud IK, Pillai H, Remadevi V, Dharmaseelan S, Nair RR, Pillai MR. Molecular diagnosis of Chikungunya virus (CHIKV) and dengue virus (DENV) and its concomitant circulation in South Indian population. Virol Rep. 2015;5:56–62. https://doi.org/10.1016/j.virep.2015.05.001
13. Beltrán-Silva SL, Chacón-Hernández SS, Moreno-Palacios E, Pereyra-Molina JÁ. Clinical and differential diagnosis: Dengue, chikungunya and Zika. Rev Med Hosp Gen (Mex). 2018;81(3):146–53. https://doi.org/10.1016/j.hgmx.2016.09.011
14. Ravindran S, Lahon A. Tropism and immune response of Chikungunya and Zika viruses: An overview. Cytokine. 2023;170:156327. https://doi.org/10.1016/j.cyto.2023.156327
15. Simo FBN, Burt FJ, Makoah NA. Chikungunya virus diagnosis: A review of current antigen detection methods. Trop Med Infect Dis. 2023;8(7):365. https://doi.org/10.3390/tropicalmed8070365
16. Musso D, Gubler DJ. Zika virus: Following the path of Dengue and Chikungunya? Lancet. 2015;386(9990):243–4. https://doi.org/10.1016/S0140-6736(15)61273-9
17. Zamarina TV, Pimenova EV, Khrapova NP, Baturin AA. Current state of Chikungunya fever laboratory diagnosis (review of literature). Russian Clinical Laboratory Diagnostics. 2021;66(9):558–64 (In Russ.). https://doi.org/10.51620/0869-2084-2021-66-9-558-564
18. Burdino E, Calleri G, Caramello P, Ghisetti V. Unmet needs for a rapid diagnosis of Chikungunya virus infection. Emerg Infect Dis. 2016;22(10):1837–9. https://doi.org/10.3201/eid2210.151784
19. Segato-Vendrameto CZ, Zanluca C, Zucoloto AZ, Zaninelli TH, Bertozzi MM, Saraiva-Santos T, et al. Chikungunya virus and its envelope protein E2 induce hyperalgesia in mice: Inhibition by anti-E2 monoclonal antibodies and by targeting TRPV1. Cells. 2023;12(4):556. https://doi.org/10.3390/cells12040556
20. Powers AM. Vaccine and therapeutic options to control Chikungunya virus. Clin Microbiol Rev. 2018;31(1):e00104–16. https://doi.org/10.1128/cmr.00104-16
21. Subudhi BB, Chattopadhyay S, Mishra P, Kumar A. Current strategies for inhibition of chikungunya infection. Viruses. 2018;10(5):235. https://doi.org/10.3390/v10050235
22. Sofyantoro F, Frediansyah A, Priyono DS, Putri WA, Septriani NI, Wijayanti N, et al. Growth in Chikungunya virus-related research in ASEAN and South Asian countries from 1967 to 2022 following disease emergence: A bibliometric and graphical analysis. Global Health. 2023;19(1):9. https://doi.org/10.1186/s12992-023-00906-z
23. Ignatyev GM, Oksanich AS, Kazakova EV, Samartseva TG, Otrashevskaya ЕV, Uyba SV, Trukhin VP. Isolation and genetic analysis of the chikungunya virus from Aedes aegypti and Aedes albopictus mosquitoes captured in Central America. Journal of Microbiology, Epidemiology and Immunobiology. 2023;100(5):310–18 (In Russ.). https://doi.org/10.36233/0372-9311-354
24. Mardekian SK, Roberts AL. Diagnostic options and challenges for Dengue and Chikungunya viruses. Biomed Res Int. 2015;2015(1):834371. https://doi.org/10.1155/2015/834371
25. Johnson BW, Russell BJ, Goodman CH. Laboratory diagnosis of Chikungunya virus infections and commercial sources for diagnostic assays. J Infect Dis. 2016;214(suppl_5):S471–4. https://doi.org/10.1093/infdis/jiw274
26. Kumar J, Khan M, Gupta G, Bhoopati M, Lakshmana Rao PV, Parida M. Production, characterization, and application of monoclonal antibodies specific to recombinant (E2) structural protein in antigen-capture ELISA for clinical diagnosis of Chikungunya virus. Viral Immunol. 2012;25(2):153–60. https://doi.org/10.1089/vim.2011.0068
27. Shukla J, Khan M, Tiwari M, Sannarangaiah S, Sharma S, Rao PV, Parida M. Development and evaluation of antigen capture ELISA for early clinical diagnosis of Chikungunya. Diagn Microbiol Infect Dis. 2009;65(2):142–9. https://doi.org/10.1016/j.diagmicrobio.2009.06.017
28. Verma A, Chandele A, Nayak K, Kaja MK, Arulandu A, Lodha R, Ray P. High yield expression and purification of Chikungunya virus E2 recombinant protein and its evaluation for serodiagnosis. J Virol Methods. 2016;235:73–9. https://doi.org/10.1016/j.jviromet.2016.05.003
29. Weber C, Berberich E, von Rhein C, Henß L, Hildt E, Schnierle BS. Identification of functional determinants in the Chikungunya virus E2 protein. PLoS Negl Trop Dis. 2017;11(1):e0005318. https://doi.org/10.1371/journal.pntd.0005318
30. Goh LY, Kam YW, Metz SW, Hobson-Peters J, Prow NA, McCarthy S, et al. A sensitive epitope-blocking ELISA for the detection of Chikungunya virus-specific antibodies in patients. J Virol Methods. 2015;222:55–61. https://doi.org/10.1016/j.jviromet.2015.05.011
31. Guo M, Du S, Lai L, Wu W, Huang X, Li A, et al. Development and evaluation of recombinant E2 protein based IgM capture enzyme-linked immunosorbent assay (ELISA) and double antigen sandwich ELISA for detection of antibodies to Chikungunya virus. PLoS Negl Trop Dis. 2022;16(12):e0010829. https://doi.org/10.1371/journal.pntd.0010829
32. Kim J, Yang J, Kim YB, Lee HJ, Kim S, Poo H. Development of a specific CHIKV-E2 monoclonal antibody for Chikungunya diagnosis. Virol Sin. 2019;34(5):563–71. https://doi.org/10.1007/s12250-019-00135-y
33. Oksanich AS, Samartseva TG, Kaa KV, Otrashevskaia EV, Krasko AG, Laputina AG, et al. Molecular genetic methods for quality control of inactivated vaccines using a Chikungunya virus model: Vaccine strain identification and completeness of virus inactivation. Biological Products. Prevention, Diagnosis, Treatment. 2024;24(3):279–93 (In Russ.). https://doi.org/10.30895/2221-996X-2024-24-3-279-293
34. Frolov I, Frolova EI. Molecular virology of Chikungunya virus. Curr Top Microbiol Immunol. 2022;435:1–31. https://doi.org/10.1007/82_2018_146
35. Delang L, Li C, Tas A, Quérat G, Albulescu IC, De Burghgraeve T, et al. The viral capping enzyme nsP1: A novel target for the inhibition of Chikungunya virus infection. Sci Rep. 2016;6(1):31819. https://doi.org/10.1038/srep31819
36. Jose J, Snyder JE, Kuhn RJ. A structural and functional perspective of alphavirus replication and assembly. Future Microbiol. 2009;4(7):837–56. https://doi.org/10.2217/fmb.09.59
37. Sharma R, Kesari P, Kumar P, Tomar S. Structure-functioninsights into Chikungunya virus capsid protein: Small molecules targeting capsid hydrophobic pocket. Virology. 2018;515:223–34. https://doi.org/10.1016/j.virol.2017.12.020
38. Strauss JH, Strauss EG. The alphaviruses: Gene expression, replication, andevolution. MicrobiolRev.1994;58(3):491–562. https://doi.org/10.1128/mr.58.3.491-562.1994
39. Wu L, Xu Y, Zhao H, Li Y. RNase T2 in inflammation and cancer: Immunological and biological views. Front Immunol. 2020;11:1554. https://doi.org/10.3389/fimmu.2020.01554
Supplementary files
![]() |
1. Table S1. Sensitivity analysis of the ELISA test system developed in the study | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(134KB)
|
Indexing metadata ▾ |
![]() |
2. Table S2. Linearity testing with different concentrations of Сhikungunya virus E2 protein | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(86KB)
|
Indexing metadata ▾ |
![]() |
3. Table S3. Estimation of the coefficient of variation in quantifying E2 protein by enzyme-linked immunosorbent assay | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(121KB)
|
Indexing metadata ▾ |
![]() |
4. Table S4. Spiked and recovered concentrations of CHIKV E2 protein in mixed calibration samples in the recovery test | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(122KB)
|
Indexing metadata ▾ |
Review
For citations:
Tahhan B., Pritvorova L.N., Samartseva T.G., Kedik S.A., Oksanich A.S. Development of an enzyme-linked immunosorbent assay test system for quantifying Chikungunya virus E2 protein and calculating the mass of whole-virion antigen in culture fluid samples. Biological Products. Prevention, Diagnosis, Treatment. 2025;25(2):214-225. (In Russ.) https://doi.org/10.30895/2221-996X-2025-632