Preview

Biological Products. Prevention, Diagnosis, Treatment

Advanced search

Current regulatory requirements for stability studies of biological medicinal products: a review

https://doi.org/10.30895/2221-996X-2024-24-3-335-347

Abstract

INTRODUCTION. The stability assessment of biological medicinal products (BMPs) requires special approaches and regulatory requirements. Therefore, BMPs require relevant national guidelines, which are an important prerequisite for the assurance of the safe and effective use of BMPs.

AIM. This study aimed to analyse national and international requirements for the stability assessment of BMPs in order to use the results to inform future development of a unified regulatory approach to estimating and confirming shelf-life periods for BMPs.

DISCUSSION. Most biotechnological medicinal products (BTMPs) are proteins and are highly sensitive to environmental factors by nature. Therefore, the shelf life of a BTMP is established on the basis of real-time stability studies. Stability testing under accelerated and stress conditions is conducted to support shelf-life claims and to characterise the mechanism of protein structure degradation. The results of accelerated and stress studies can be used to select the most sensitive stability-indicating parameters and testing methods. National and international regulatory authorities have developed specialised guidelines for stability studies of BMPs of various origins, and the stability assessment approaches in the regulatory system of the Eurasian Economic Union (EAEU) are harmonised with international standards. Special considerations associated with the stability of vaccines imply that stability studies of vaccines should not only establish shelf life but also investigate stability after reconstitution and after short-term temperature excursions from the recommended cold-chain conditions.

CONCLUSIONS. Special stability testing considerations for various groups of BMPs (including BTMPs and immunobiologicals) indicate the need to develop and improve the system of requirements for BMP stability assessment. This will facilitate the optimisation of the life cycle of BMPs in the Russian Federation and the other EAEU member states.

About the Authors

A. A. Soldatov
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Aleksandr A. Soldatov, Dr. Sci. (Med.)

8/2 Petrovsky Blvd, Moscow 127051



A. K. Yakovlev
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Aleksey K. Yakovlev, Cand. Sci. (Biol.)

8/2 Petrovsky Blvd, Moscow 127051



Zh. I. Avdeeva
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Zhanna I. Avdeeva, Dr. Sci. (Med.), Prof.

8/2 Petrovsky Blvd, Moscow 127051



D. V. Gorenkov
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Dmitry V. Gorenkov

8/2 Petrovsky Blvd, Moscow 127051



A. S. Korovkin
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Alexey S. Korovkin, Cand. Sci. (Med.)

8/2 Petrovsky Blvd, Moscow 127051



V. V. Kosenko
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Valentina V. Kosenko, Cand. Sci. (Pharm.)

8/2 Petrovsky Blvd, Moscow 127051



References

1. Berkowitz, S., Rathore, A.S., Krull, I.S. Challenges in the Determination of Protein Aggregates. Part II. LCGC North Am. 2015;33(7):478–489.

2. Rathore A.S., Krull, I.S. Challenges in the Determination of Protein Aggregates, Part I. LCGC North Am. 2015;33(1):42–49.

3. Noel JC, Lagassé D, Golding B, Sauna ZE. Emerging approaches to induce immune tolerance to therapeutic proteins. Trends Pharmacol Sci. 2023 Dec;44(12):1028-1042. doi: 10.1016/j.tips.2023.10.002. Epub 2023 Oct 29. PMID: 37903706.

4. Wearne SJ, Creighton TE. Effect of protein conformation on rate of deamidation: ribonuclease A. Proteins: Struct., Funct. and Bioinform. 1989; 5(1):8–12. https://doi.org/10.1002/prot.340050103.

5. Grigolato F, Arosio P. Synergistic effects of flow and interfaces on antibody aggregation. Biotechnol Bioeng. 2020 Feb;117(2):417-428. doi: 10.1002/bit.27212. Epub 2019 Nov 12. PMID: 31654415.

6. Shah M. Commentary: New perspectives on protein aggregation during Biopharmaceutical development. Int J Pharm. 2018 Dec 1;552(1-2):1-6. doi: 10.1016/j.ijpharm.2018.09.049. Epub 2018 Sep 22. PMID: 30253208.

7. Chi EY, Krishnam S, Randolph TW, Carpenter JF. Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation. Pharm Res. 2003; 20(9):1325–1336. https://doi:10.1023/a:1025771421906.

8. Jacob S, Shirwaikar AA, Srinivasan KK, Alex J, Prabu SL, Mahalaxmi R, Kumar R. Stability of proteins in aqueous solution and solid state. Indian J Pharm Sci. 2006; 68(2):154–163. https://doi:10.4103/0250-474X.25708.

9. Larson NR, Wei Y, Prajapati I, Chakraborty A, Peters B, Kalonia C, Hudak S, Choudhary S, Esfandiary R, Dhar P, Schöneich C, Middaugh CR. Comparison of Polysorbate 80 Hydrolysis and Oxidation on the Aggregation of a Monoclonal Antibody. J Pharm Sci. 2020 Jan;109(1):633-639. doi: 10.1016/j.xphs.2019.10.069. Epub 2019 Nov 20. PMID: 31758949.

10. Xie M, Schowen R. Secondary structure and protein deamidation. J Pharm Sci. 1999; 88(1): 8–13. https://doi:10.1021/js9802493.

11. Cohen S, Price C, Vlasak J. β-Elimination and peptide bond hydrolysis: two distinct mechanisms of human IgG1 hinge fragmentation upon storage. J Am Chem Soc. 2007; 129(22):6976–6977. https://doi:10.1021/ja0705994.

12. Cordoba AJ, Shyong B, Breen D, Harris RJ. Non-enzymatic hinge region fragmentation of antibodies in solution. J Chromatogr B Analyt Technol Biomed Life Sci. 2005; 818(2):115–121. https://doi:10.1016/j.jchromb.2004.12.033.

13. Werner R, Kopp K, Schlueter, M. Glycosylation of therapeutic proteins in different production systems. Acta Paediatr. 2007; 96(455):17–22. https://doi:10.1111/j.1651-2227.2007.00199.x.

14. Luo D, Smith SW, Anderson BD. Kinetics and mechanism of the reaction of cysteine and hydrogen peroxide in aqueous solution. J Pham Sci. 2005; 94(2):304–316. https://doi:10.1002/jps.20253.

15. Cleland JL, Lam X, Kendrick B, Yang J, Yang T, Overcashier D, Brooks D, Hsu C, Carpenter J. A specific molar ratio of stabilizer to protein is required for storage stability of a lyophilized monoclonal antibody. J Pharm Sci. 2001; 90(3):310–321. https://doi:10.1002/1520-6017(200103)90:3<310::aid-jps6>3.0.co;2-r.

16. Constantino HR, Carrasquillo KG, Cordero RA, Mumenthaler M, Hsu CC, Gribenow K. Effect of excipients on the stability and structure of lyophilized recombinant human growth hormone. J Pharm Sci. 1998; 87(11):1412–1420. https://doi:10.1021/js980069t.

17. Lai MC, Topp EM. Solid-state chemical stability of proteins and peptides. J Pharm Sci. 1999; 88(5):489–500. https://doi:10.1021/js980374e.

18. Li S, Patapoff TW, Overcashier, D, Hsu C, Nguyen TH, Borchardt RT. Effects of reducing sugars on the chemical stability of human relaxin in the lyophilized state. J Pharm Sci. 1996; 85(8):873–877. https://doi:10.1021/js950456s.

19. Narhi LO, Chou DK, Christian TR, Gibson S, Jagannathan B, Jiskoot W, Jordan S, Sreedhara A, Waxman L, Das TK. Stress Factors in Primary Packaging, Transportation and Handling of Protein Drug Products and Their Impact on Product Quality. J Pharm Sci. 2022 Apr;111(4):887-902. doi: 10.1016/j.xphs.2022.01.011. Epub 2022 Jan 23. PMID: 35081407.

20. Besheer A, Burton L, Galas RJ Jr, Gokhale K, Goldbach P, Hu Q, Mathews L, Muthurania K, Narasimhan C, Singh SN, Stokes ESE, Weiser S, Zamiri C, Zhou S. An Industry Perspective on Compatibility Assessment of Closed System Drug-Transfer Devices for Biologics. J Pharm Sci. 2021 Feb;110(2):610-614. doi: 10.1016/j.xphs.2020.10.047. Epub 2020 Oct 28. PMID: 33127425.

21. Campa C, Pronce T, Paludi M, Weusten J, Conway L, Savery J, Richards C, Clénet D. Use of Stability Modeling to Support Accelerated Vaccine Development and Supply. Vaccines (Basel). 2021 Sep 30;9(10):1114. doi: 10.3390/vaccines9101114. PMID: 34696222; PMCID: PMC8539070.

22. Bunc M, Hadži S, Graf C, Bončina M, Lah J. Aggregation Time Machine: A Platform for the Prediction and Optimization of Long-Term Antibody Stability Using Short-Term Kinetic Analysis. J Med Chem. 2022 Feb 10;65(3):2623-2632. doi: 10.1021/acs.jmedchem.1c02010. Epub 2022 Jan 28. PMID: 35090111; PMCID: PMC8842250.

23. Lyon RC, Taylor JS, Porter DA, Prasanna HR, Hussain AS. Stability profiles of drug products extended beyond labeled expiration dates. J. Pharm. Sci. 2006; 95(7):1549–1560. https://doi:10.1002/jps.20636.

24. Diven DG, Bartenstein DW, Carroll DR. Extending shelf life just makes sense. Mayo Clin, Proc. 2015; 90(11):1471–1474. https://doi:10.1016/j.mayocp.2015.08.007.

25. Heilmann K. Medikamentenmüll - recyceln oder vermeiden? Apoth. 14(2004) 31.

26. Lachmuth JY, Stichtenoth DO. Use of pharmaceuticals after the expiration date? Dtsch Med. Wochenschr. 2005; 130(45);2596–2597. https://doi:10.1055/s-2005-922041.

27. Courtney B, Easton J, Inglesby TV. Localmedical countermeasure stockpile investments through the Shelf-LifeExtension Program, Biosecur. Bioterror. 2009; 101–107.

28. Khan SR, Kona R, Faustino PJ, Gupta A, Taylor JS, Porter DA, Khan M. United States Food and Drug Administration and Department of Defense shelf-life extension program of pharmaceutical products: progress and promise. J Pharm Sci. 2014; 103(5):1331–1336. https://doi:10.1002/jps.23925

29. Lachmuth J, Stichtenoth D. Verbrauch von Medikamenten nach Verfallsfrist? Dtsch Med. Wochenschr. 2005; 130(45):2596–2597. https://doi:10.1055/s-2005-922041.

30. Beck CD. Noch sicher wirksam oder schon verfallen? Apoth. 2016; 38:22.

31. Glaeske G. Boeschen D. Windt R. Arzneimittelsicherheit: Haltbarkeit von Arzneimitteln haltbarkeit von arzneimitteln. Apoth. 2011; 50:70–73.

32. Bardin C, Astier A, Vulto A, Sewell G, et. al. Guidelines for the practical stability studies of anticancer drugs: a European consensus conference. European Journal of Hospital Pharmacy. 2012; 19(3):278–285. https://doi.org:10.1136/ejhpharm-2012-000112.


Supplementary files

Review

For citations:


Soldatov A.A., Yakovlev A.K., Avdeeva Zh.I., Gorenkov D.V., Korovkin A.S., Kosenko V.V. Current regulatory requirements for stability studies of biological medicinal products: a review. Biological Products. Prevention, Diagnosis, Treatment. 2024;24(3):335-347. (In Russ.) https://doi.org/10.30895/2221-996X-2024-24-3-335-347

Views: 2541


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2221-996X (Print)
ISSN 2619-1156 (Online)