Implementation of the quality-by-design concept for an adeno-associated viral vector-based gene therapy
https://doi.org/10.30895/2221-996X-2025-580
Abstract
INTRODUCTION. Currently, manufacturers of adeno-associated virus (AAV)-based gene therapy products are facing a number of systemic problems stemming from the difficulties in assessing the quality of medicinal products due to insufficient scientific data, limited experience, and imperfect regulatory requirements. However, a risk-based approach to assessing critical quality attributes (CQAs) within the the framework of Quality by Design (QbD) can ensure improved efficiency in the development and production of advanced therapy medicinal products.
AIM. This study aimed to identify QbD-based CQAs and associated specifications for the development of AAV-based gene therapy products for Duchenne muscular dystrophy.
DISCUSSION. This study involved an analysis of QbD-based approaches to the development of AAV production technologies. The authors substantiated a list of the main AAV characteristics and collated available data on their impact on patients in terms of the efficacy and safety of gene therapy products and, in particular, the immune response to treatment. Following a risk assessment, the authors identified a list of CQAs for AAVs. When developing an AAV production process, the authors determined specifications for AAV CQAs, including viral and infectious titres, the presence of replication-competent AAVs, the percentage of empty capsids, and residual impurities (proteins, plasmid DNA, and residual host-cell DNA). A comprehensive risk assessment was conducted to determine the quality target product profile for an AAV-based gene therapy product for Duchenne muscular dystrophy. The authors listed the CQAs, developed the basic requirements for the applicable analytical procedures, and established the CQA specifications for the gene therapy product.
CONCLUSIONS. The use of QbD principles and risk-based approaches is an important step in CQA identification during the development of gene therapy products. The QbD methodology facilitates drafting new regulatory standards for the evaluation of the safety and efficacy of gene therapy products and helps with the development and commercial-scale manufacturing of such products.
About the Authors
D. S. KopeinRussian Federation
Damir S. Kopein, Cand. Sci. (Biol.)
10 Testovskaya St., Moscow 123112
G. N. Poroshin
Russian Federation
Grigory N. Poroshin
10 Testovskaya St., Moscow 123112
R. A. Khamitov
Russian Federation
Ravil A. Khamitov, Dr. Sci. (Med.), Prof.
10 Testovskaya St., Moscow 123112
References
1. Soldatov AA, Avdeeva ZhI, Gorenkov DV, Khantimirova LM, Guseva SG, Merkulov VA. Challenges in development and authorisation of gene therapy products. Biological Products. Prevention, Diagnosis, Treatment. 2022;22(1):6–22 (In Russ.). https://doi.org/10.30895/2221-996X-2022-22-1-6-22
2. Kolesnik VV, Nurtdinov RF, Oloruntimehin ES, Karabelsky AV, Malogolovkin AS. Optimization strategies and advances in the research and development of AAV-based gene therapy to deliver large transgenes. Clin Transl Med. 2024;14(3):e1607. https://doi.org/10.1002/ctm2.1607
3. Egorova TV, Piskunov AA, Poteryaev DA. Adeno-associated virus vector-based gene therapy for hereditary diseases: Current problems of application and approaches to solve them. Biological Products. Prevention, Diagnosis, Treatment. 2024;24(2):123–39 (In Russ.). https://doi.org/10.30895/2221-996X-2024-24-2-123-139
4. Daya S, Berns KI. Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev. 2008;21(4):583–93. https://doi.org/10.1128/CMR.00008-08
5. Brister JR, Muzyczka N. Mechanism of Rep-mediated adeno-associated virus origin nicking. J Virol. 2000;74(17):7762–71. https://doi.org/10.1128/JVI.74.17.7762-7771.2000
6. McCarty DM, Ryan JH, Zolotukhin S, Zhou X, Muzyczka N. Interaction of the adeno-associated virus Rep protein with a sequence within the A palindrome of the viral terminal repeat. J Virol. 1994;68(8):4998–5006. https://doi.org/10.1128/jvi.68.8.4998-5006.1994
7. Issa SS, Shaimardanova AA, Solovyeva VV, Rizvanov AA. Various AAV serotypes and their applications in gene therapy: An overview. Cells. 2023;12(5):785. https://doi.org/10.3390/cells12050785
8. Wang J-H, Gessler DJ, Zhan W, Gallagher TL, Gao G. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduct Target Ther. 2024;9(1):78. https://doi.org/10.1038/s41392-024-01780-w
9. Penaud-Budloo M, François A, Clément N, Ayuso E. Pharmacology of recombinant adeno-associated virus production. Mol Ther Methods Clin Dev. 2018;8:166–80. https://doi.org/10.1016/j.omtm.2018.01.002
10. Juran JM. Juran on quality by design: the new steps for planning quality into goods and services. Free Press; 1992.
11. François A, Bouzelha M, Lecomte E, Broucque F, Penaud-Budloo M, Adjali O, et al. Accurate titration of infectious AAV particles requires measurement of biologically active vector genomes and suitable controls. Mol Ther Methods Clin Dev. 2018;10:223–36. https://doi.org/10.1016/j.omtm.2018.07.004
12. Gimpel AL, Katsikis G, Sha S, Maloney AJ, Hong MS, Nguyen TNT, et al. Analytical methods for process and product characterization of recombinant adeno-associated virus-based gene therapies. Mol Ther Methods Clin Dev. 2021;20:740–54. https://doi.org/10.1016/j.omtm.2021.02.010
13. Lock M, Alvira MR, Chen S-J, Wilson JM. Absolute determination of single-stranded and self-complementary adeno-associated viral vector genome titers by droplet digital PCR. Human Gene Ther Methods. 2014;25(2):115–25. https://doi.org/10.1089/hgtb.2013.131
14. Dobnik D, Kogovsek P, Jakomin T, Kosir N, Tusek Znidaric M, Leskovec M, et al. Accurate quantification and characterization of adeno-associated viral vectors. Front Microbiol. 2019;10:1570. https://doi.org/10.3389/fmicb.2019.01570
15. Gao K, Li M, Zhong L, Su Q, Li J, Li S, et al. Empty virions in AAV8 vector preparations reduce transduction efficiency and may cause total viral particle dose-limiting side effects. Mol Ther Methods Clin Dev. 2014;1(9):20139. https://doi.org/10.1038/mtm.2013.9
16. Grieger JC, Soltys SM, Samulski RJ. Production of recombinant adeno-associated virus vectors using suspension HEK293 cells and continuous harvest of vector from the culture media for GMP FIX and FLT1 clinical vector. Mol Ther. 2016;24(2):287–97. https://doi.org/10.1038/mt.2015.187
17. Allay JA, Sleep S, Long S, Tillman DM, Clark R, Carney G, et al. Good manufacturing practice production of self-complementary serotype 8 adeno-associated viral vector for a hemophilia B clinical trial. Hum Gene Ther. 2011;22(5):595–604. https://doi.org/10.1089/hum.2010.202
18. Kaspar BK, Hatfield JM, Balleydier J, Kaspar AA, Hodge RE. Means and method for producing and purifying viral vectors. Patent of the United States No. US 2021/0317474 A1; 2021.
19. Yang TY, Braun M, Lembke W, McBlane F, Kamerud J, DeWall S, et al. Immunogenicity assessment of AAV-based gene therapies: An IQ consortium industry white paper. Mol Ther Methods Clin Dev. 2022;26:471–94. https://doi.org/10.1016/j.omtm.2022.07.018
20. Martino AT, Suzuki M, Markusic DM, Zolotukhin I, Ryals RC, Moghimi B, et al. The genome of self-complementary adeno-associated viral vectors increases Toll-like receptor 9–dependent innate immune responses in the liver. Blood. 2011;117(24):6459–68. https://doi.org/10.1182/blood-2010-10-314518
21. Kishimoto TK, Samulski RJ. Addressing high dose AAV toxicity — ‘one and done’ or ‘slower and lower’? Expert Opin Biol Ther. 2022;22(9):1067–71. https://doi.org/10.1080/14712598.2022.2060737
22. Allen JM, Debelak DJ, Reynolds TC, Miller AD. Identification and elimination of replication-competent adeno-associated virus (AAV) that can arise by nonhomologous recombination during AAV vector production. J Virol. 1997;71(9):6816–22. https://doi.org/10.1128/jvi.71.9.6816-6822.1997
23. Song L, Samulski RJ, Hirsch ML. Adeno-associated virus vector mobilization, risk versus reality. Hum Gene Ther. 2020;31(19–20):1054–67. https://doi.org/10.1089/hum.2020.118
24. Wright J. Product-related impurities in clinical-grade recombinant AAV vectors: Characterization and risk assessment. Biomedicines. 2014;2(1):80–97. https://doi.org/10.3390/biomedicines2010080
25. Giles AR, Sims JJ, Turner KB, Govandasamy L, Alvira MR, Lock M, Wilson JM. Deamidation of amino acids on the surface of adeno-associated virus capsids leads to charge heterogeneity and altered vector function. Mol Ther. 2018;26(12):2848–62. https://doi.org/10.1016/j.ymthe.2018.09.013
26. Rumachik NG, Malaker SA, Poweleit N, Maynard LH, Adams CM, Leib RD, et al. Methods matter: Standard production platforms for recombinant AAV produce chemically and functionally distinct vectors. Mol Ther Methods Clin Dev. 2020;18:98–118. https://doi.org/10.1016/j.omtm.2020.05.018
27. Murray S, Nilsson CL, Hare JT, Emmett MR, Korostelev A, Ongley H, et al. Characterization of the capsid protein glycosylation of adeno-associated virus type 2 by high-resolution mass spectrometry. J Virol. 2006;80(12):6171–6. https://doi.org/10.1128/JVI.02417-05
28. Aloor A, Zhang J, Gashash EA, Parameswaran A, Chrzanowski M, Ma C, et al. Site-specific N-glycosylation on the AAV8 capsid protein. Viruses. 2018;10(11):644. https://doi.org/10.3390/v10110644
29. Lecomte E, Tournaire B, Cogne B, Dupont JB, Lindenbaum P, Martin-Fontaine M, et al. Advanced characterization of DNA molecules in rAAV vector preparations by single-stranded virus next-generation sequencing. Mol Ther Nucleic Acids. 2015;4(10):e260. https://doi.org/10.1038/mtna.2015.32
30. Sheng L, Cai F, Zhu Y, Pal A, Athanasiou M, Orrison B, et al. Oncogenicity of DNA in vivo: Tumor induction with expression plasmids for activated H-ras and c-myc. Biologicals. 2008;36(3):184–97. https://doi.org/10.1016/j.biologicals.2007.11.003
31. Hauck B, Murphy SL, Smith PH, Qu G, Liu X, Zelenaia O, et al. Undetectable transcription of cap in a clinical AAV vector: Implications for preformed capsid in immune responses. Mol Ther. 2009;17(1):144–52. https://doi.org/10.1038/mt.2008.227
32. Chadeuf G, Ciron C, Moullier P, Salvetti A. Evidence for encapsidation of prokaryotic sequences during recombinant adeno-associated virus production and their in vivo persistence after vector delivery. Mol Ther. 2005;12(4):744–53. https://doi.org/10.1016/j.ymthe.2005.06.003
33. Astapova OV, Berchatova AA. Gene therapy medicinal products: Non-clinical safety studies. Safety and Risk of Pharmacotherapy. 2023;11(1):73–96 (In Russ.). https://doi.org/10.30895/2312-7821-2023-11-1-329
34. Prince WS, Baker DL, Dodge AH, Ahmed AE, Chestnut RW, Sinicropi DV. Pharmacodynamics of recombinant human DNase I in serum. Clin Exp Immunol. 2001;113(2):289–96. https://doi.org/10.1046/j.1365-2249.1998.00647.x
35. Duong T, McAllister J, Eldahan K, Wang J, Onishi E, Shen K, et al. Improvement of precision in recombinant adeno-associated virus infectious titer assay with droplet digital PCR as an endpoint measurement. Hum Gene Ther. 2023;34(15–16):742–57. https://doi.org/10.1089/hum.2023.014
36. Schnödt M, Büning H. Improving the quality of adeno-associated viral vector preparations: The challenge of product-related impurities. Hum Gene Ther Methods. 2017;28(3):101–8. https://doi.org/10.1089/hgtb.2016.188
Supplementary files
![]() |
1. Table 1. Risk classification for critical quality attributes | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(578KB)
|
Indexing metadata ▾ |
Review
For citations:
Kopein D.S., Poroshin G.N., Khamitov R.A. Implementation of the quality-by-design concept for an adeno-associated viral vector-based gene therapy. Biological Products. Prevention, Diagnosis, Treatment. 2025;25(2):141-155. (In Russ.) https://doi.org/10.30895/2221-996X-2025-580