Preview

Biological Products. Prevention, Diagnosis, Treatment

Advanced search

miRNA-targeting oligonucleotide constructs with various mechanisms of action as effective inhibitors of carcinogenesis

https://doi.org/10.30895/2221-996X-2024-24-2-140-156

Abstract

INTRODUCTION. The development of malignant neoplasms is associated with changes in the expression of small non-coding RNAs (miRNAs). This emphasises the need for research into the development of miRNA-targeted inhibitors as a promising approach to cancer treatment.
AIM. This study aimed to compare current strategies for suppressing the functional activity of tumour-associated miRNAs based on the use of therapeutic nucleic acids and to determine the application potential of these strategies.
DISCUSSION. This study analysed known oligonucleotide-based miRNA inhibitors with different mechanisms of action. Based on their mechanism of action, miRNA-targeted inhibitors can be classified into two groups. The first group of miRNA-targeted inhibitors exhibits an indirect inhibitory effect, either by blocking functional connections between miRNAs and specific mRNA targets through the use of miRNA-masking oligonucleotides or by introducing mutations into miRNA genes and disrupting gene biosynthesis processes through the use of the CRISPR/Cas system. Despite their relatively high biological potential, these strategies are mostly used as search tools to study miRNA functional roles and molecular interactions in carcinogenesis. The second group of oligonucleotide constructs interacts with miRNA targets directly, which leads to steric blocking or degradation of oncogenic microRNAs. These miRNA-binding oligonucleotide constructs come in a variety of structural variants, including miRNA sponges, RNA zippers, antisense oligonucleotides, and miRNases, which demonstrate high therapeutic potential in vitro and in vivo.
CONCLUSION. The described analysis of the biological properties, therapeutic potential, and key advantages of the developed miRNA-targeted oligonucleotide constructs helps outline the areas for their potential practical application in cancer treatment.

About the Authors

S. K. Miroshnichenko
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Svetlana K. Miroshnichenko, Cand. Sci. (Biol.)

8 Academician Lavrentyev Ave, Novosibirsk 630090



O. A. Patutina
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Olga A. Patutina, Cand. Sci. (Biol.)

8 Academician Lavrentyev Ave, Novosibirsk 630090



M. A. Zenkova
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Marina A. Zenkova, Dr. Sci. (Biol.), Professor, Corr. Member of RAS

8 Academician Lavrentyev Ave, Novosibirsk 630090



References

1. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294(5543):853–8. https://doi.org/10.1126/SCIENCE.1064921

2. Kloosterman WP, Plasterk RHA. The diverse functions of microRNAs in animal development and disease. Dev Cell. 2006;11(4):441–50. https://doi.org/10.1016/J.DEVCEL.2006.09.009

3. Ilieva M, Panella R, Uchida S. MicroRNAs in cancer and cardiovascular disease. Cells. 2022;11(22):3551. https://doi.org/10.3390/cells11223551

4. Tabasi H, Mollazadeh S, Fazeli E, Abnus K, Taghdisi SM, Ramezani M, et al. Transitional insight into the RNA-based oligonucleotides in cancer treatment. Appl Biochem Biotechnol. 2024;196(3):1685–711. https://doi.org/10.1007/s12010-023-04597-5

5. Raue R, Frank AC, Syed SN, Brüne B. Therapeutic targeting of microRNAs in the tumor microenvironment. Int J Mol Sci. 2021;22(4):2210. https://doi.org/10.3390/ijms22042210

6. Reda El Sayed S, Cristante J, Guyon L, Denis J, Chabre O, Cherradi N. MicroRNA therapeutics in cancer: current advances and challenges. Cancers (Basel). 2021;13(11):2680. https://doi.org/10.3390/cancers13112680

7. Alles J, Fehlmann T, Fischer U, Backes C, Galata V, Minet M, et al. An estimate of the total number of true human miRNAs. Nucleic Acids Res. 2019;47(7):3353–64. https://doi.org/10.1093/NAR/GKZ097

8. Friedman RC, Farh KKH, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19(1):92–105. https://doi.org/10.1101/GR.082701.108

9. Dexheimer PJ, Cochella L. MicroRNAs: from mechanism to organism. Front Сell Dev Biol. 2020;8:409. https://doi.org/10.3389/FCELL.2020.00409

10. Bofill-De Ros X, Vang Ørom UA. Recent progress in miRNA biogenesis and decay. RNA Biol. 2024;21(1):1–8. https://doi.org/10.1080/15476286.2023.2288741

11. Treiber T, Treiber N, Meister G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol. 2019; 20(1):5–20. https://doi.org/10.1038/S41580-018-0059-1

12. Bartel DP. Metazoan microRNAs. Cell. 2018;173(1):20–51. https://doi.org/10.1016/j.cell.2018.03.006

13. Gebert LFR, MacRae IJ. Regulation of microRNA function in animals. Nat Rev Mol Cell Biol. 2019;20(1):21–37. https://doi.org/10.1038/S41580-018-0045-7

14. Nakanishi K. Anatomy of four human Argonaute proteins. Nucleic Acids Res. 2022;50(12):6618–38. https://doi.org/10.1093/nar/gkac519

15. Chen CYA, Shyu A. Mechanisms of deadenylation-dependent decay. Wiley Interdiscip Rev RNA. 2011;2(2):167–83. https://doi.org/10.1002/WRNA.40

16. Diener C, Keller A, Meese E. The miRNA-target interactions: an underestimated intricacy. Nucleic Acids Res. 2024;52(4):1544–57. https://doi.org/10.1093/NAR/GKAD1142

17. Hu X, Yin G, Zhang Y, Zhu L, Huang H, Lv K. Recent advances in the functional explorations of nuclear microRNAs. Front Immunol. 2023;14:1097491. https://doi.org/10.3389/FIMMU.2023.1097491

18. Liu H, Lei C, He Q, Pan Z, Xiao D, Tao Y. Nuclear functions of mammalian microRNAs in gene regulation, immunity and cancer. Mol Cancer. 2018;17(1):64. https://doi.org/10.1186/S12943-018-0765-5

19. Failer T, Amponsah-Offeh M, Neuwirth A, Kourtzelis I, Subramanian P, Mirtschink P, et al. Developmental endothelial locus-1 protects from hypertension-induced cardiovascular remodeling via immunomodulation. J Clin Invest. 2022;132(6):126155. https://doi.org/10.1172/JCI126155

20. Angelucci F, Cechova K, Valis M, Kuca K, Zhang B, Hort J. MicroRNAs in Alzheimer’s disease: diagnostic markers or therapeutic agents? Front Pharmacol. 2019;10:665. https://doi.org/10.3389/FPHAR.2019.00665

21. Li S, Lei Z, Sun T. The role of microRNAs in neurodegenerative diseases: a review. Cell Biol Toxicol. 2023;39(1):53–83. https://doi.org/10.1007/s10565-022-09761-x

22. Siasos G, Bletsa E, Stampouloglou PK, Oikonomou E, Tsigkou V, Paschou SA, et al. MicroRNAs in cardiovascular disease. Hell J Cardiol. 2020;61(3):165–73. https://doi.org/10.1016/j.hjc.2020.03.003

23. Peng Y, Croce CM. The role of microRNAs in human cancer. Signal Transduct Target Ther. 2016;1:15004. https://doi.org/10.1038/SIGTRANS.2015.4

24. Zhang B, Pan X, Cobb GP, Anderson TA. MicroRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302(1):1–12. https://doi.org/10.1016/J.YDBIO.2006.08.028

25. Svoronos AA, Engelman DM, Slack FJ. OncomiR or tumor suppressor? The duplicity of microRNAs in cancer. Cancer Res. 2016;76(13):3666–70. https://doi.org/10.1158/0008-5472.CAN-16-0359

26. Mollaei H, Safaralizadeh R, Rostami Z. MicroRNA replacement therapy in cancer. J Cell Physiol. 2019;234(8):12369–84. https://doi.org/10.1002/JCP.28058

27. Ragan C, Zuker M, Ragan MA. Quantitative prediction of miRNA-mRNA interaction based on equilibrium concentrations. PLoS Comput Biol. 2011;7(2):1001090. https://doi.org/10.1371/journal.pcbi.1001090

28. Kingston ER, Bartel DP. Global analyses of the dynamics of mammalian microRNA metabolism. Genome Res. 2019;29(11):1777–90. https://doi.org/10.1101/gr.251421.119

29. Zlotorynski E. Insights into the kinetics of microRNA biogenesis and turnover. Nat Rev Mol Cell Biol. 2019;20(9):511. https://doi.org/10.1038/S41580-019-0164-9

30. Sultan S, Rozzi A, Gasparello J, Manicardi A, Corradini R, Papi C, et al. A peptide nucleic acid (PNA) masking the miR-145-5p binding site of the 3’UTR of the cystic fibrosis transmembrane conductance regulator (CFTR) mRNA enhances CFTR expression in Calu-3 cells. Molecules. 2020;25(7):1677. https://doi.org/10.3390/molecules25071677

31. Colangelo T, Polcaro G, Ziccardi P, Muccillo L, Galgani M, Pucci B, et al. The miR-27a-calreticulin axis affects drug-induced immunogenic cell death in human colorectal cancer cells. Cell Death Dis. 2016;7(2):2108. https://doi.org/10.1038/cddis.2016.29

32. Zhang T, Hu Y, Ju J, Hou L, Li Z, Xiao D, et al. Downregulation of miR-522 suppresses proliferation and metastasis of nonsmall cell lung cancer cells by directly targeting DENN/ MADD domain containing 2D. Sci Rep. 2016;6(1):19346. https://doi.org/10.1038/srep19346

33. Bridge G, Monteiro R, Henderson S, Emuss V, Lagos D, Georgopoulou D, et al. The microRNA-30 family targets DLL4 to modulate endothelial cell behavior during angiogenesis. Blood. 2012;120(25):5063–72. https://doi.org/10.1182/blood-2012-04-423004

34. Munoz JL, Rodriguez-Cruz V, Ramkissoon SH, Ligon KL, Greco SJ, Rameshwar P. Temozolomide resistance in glioblastoma occurs by miRNA-9-targeted PTCH1, independent of sonic hedgehog level. Oncotarget. 2015;6(2):1190–201. https://doi.org/10.18632/oncotarget.2778

35. Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096. https://doi.org/10.1126/science.1258096

36. Hussen BM, Rasul MF, Abdullah SR, Hidayat HJ, Faraj GSH, Ali FA, et al. Targeting miRNA by CRISPR/Cas in cancer: advantages and challenges. Mil Med Res. 2023;10(1):32. https://doi.org/10.1186/S40779-023-00468-6

37. Chang H, Yi B, Ma R, Zhang X, Zhao H, Xi Y. CRISPR/cas9, a novel genomic tool to knock down microRNA in vitro and in vivo. Sci Rep. 2016;6(1):22312. https://doi.org/10.1038/srep22312

38. Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med. 2015;21(3):256–62. https://doi.org/10.1038/NM.3802

39. Jiang Q, Meng X, Meng L, Chang N, Xiong J, Cao H, et al. Small indels induced by CRISPR/Cas9 in the 5’ region of microRNA lead to its depletion and Drosha processing retardance. RNA Biol. 2014;11(10):1243–9. https://doi.org/10.1080/15476286.2014.996067

40. Kurata JS, Lin RJ. MicroRNA-focused CRISPRCas9 library screen reveals fitness-associated miRNAs. RNA. 2018;24(7):966–81. https://doi.org/10.1261/rna.066282.118

41. Wu Q, Michaels YS, Fulga TA. Interrogation of functional miRNA-target interactions by CRISPR/Cas9 genome engineering. Methods Mol Biol. 2023;2630:243–64. https://doi.org/10.1007/978-1-0716-2982-6_16

42. Aquino-Jarquin G. Emerging role of CRISPR/Cas9 technology for microRNAs editing in cancer research. Cancer Res. 2017;77(24):6812–7. https://doi.org/10.1158/0008-5472.CAN-17-2142

43. Nieland L, van Solinge TS, Cheah PS, Morsett LM, El Khoury J, Rissman JI, et al. CRISPR-Cas knockout of miR21 reduces glioma growth. Mol Ther Oncolytics. 2022;25:121–36. https://doi.org/10.1016/j.omto.2022.04.001

44. Ahi Y, Bangari D, Mittal S. Adenoviral vector immunity: its implications and circumvention strategies. Curr Gene Ther. 2011;11(4):307–20. https://doi.org/10.2174/156652311796150372

45. Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 2007;4(9):721–6. https://doi.org/10.1038/nmeth1079

46. Jie J, Liu D, Wang Y, Wu Q, Wu T, Fang R. Generation of MiRNA sponge constructs targeting multiple MiRNAs. J Clin Lab Anal. 2022;36(7):24527. https://doi.org/10.1002/jcla.24527

47. Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science. 2004;305(5689):1437–41. https://doi.org/10.1126/science.1102513

48. Kluiver J, Slezak-Prochazka I, Smigielska-Czepiel K, Halsema N, Kroesen BJ, van den Berg A. Generation of miRNA sponge constructs. Methods. 2012;58(2):113–7. https://doi.org/10.1016/j.ymeth.2012.07.019

49. Rama AR, Quiñonero F, Mesas C, Melguizo C, Prados J. Synthetic circular miR-21 sponge as tool for lung cancer treatment. Int J Mol Sci. 2022;23(6):2963. https://doi.org/10.3390/ijms23062963

50. Gao S, Tian H, Guo Y, Li Y, Guo Z, Zhu X, et al. miRNA oligonucleotide and sponge for miRNA-21 inhibition mediated by PEI-PLL in breast cancer therapy. Acta Biomater. 2015;25:184–193. https://doi.org/10.1016/j.actbio.2015.07.020

51. Liang AL, Zhang TT, Zhou N, Wu CY, Lin MH, Liu YJ. miRNA-10b sponge: an anti-breast cancer study in vitro. Oncol Rep. 2016;35(4):1950–8. https://doi.org/10.3892/or.2016.4596

52. Mignacca L, Saint-Germain E, Benoit A, Bourdeau V, Moro A, Ferbeyre G. Sponges against miR-19 and miR-155 reactivate the p53-Socs1 axis in hematopoietic cancers. Cytokine. 2016;82:80–6. https://doi.org/10.1016/j.cyto.2016.01.015

53. Liu S, Sun X, Wang M, Hou Y, Zhan Y, Jiang Y, et al. A microRNA 221– and 222–mediated feedback loop maintains constitutive activation of NFκB and STAT3 in colorectal cancer cells. Gastroenterology. 2014;147(4):847–59. https://doi.org/10.1053/j.gastro.2014.06.006

54. Lu Y, Xiao J, Lin H, Bai Y, Luo X, Wang Z, et al. A single anti-microRNA antisense oligodeoxyribonucleotide (AMO) targeting multiple microRNAs offers an improved approach for microRNA interference. Nucleic Acids Res. 2009;37(3):24. https://doi.org/10.1093/nar/gkn1053

55. Mukherji S, Ebert MS, Zheng GXY, Tsang JS, Sharp PA, van Oudenaarden A. MicroRNAs can generate thresholds in target gene expression. Nat Genet. 2011;43(9):854–9. https://doi.org/10.1038/ng.905

56. Alkan AH, Akgül B. Endogenous miRNA sponges. Methods Mol Biol. 2022;2257:91–104. https://doi.org/10.1007/978-1-0716-1170-8_5

57. Olesen MT, Kristensen L. Circular RNAs as microRNA sponges: evidence and controversies. Essays Biochem. 2021;65(4):685–96. https://doi.org/10.1042/EBC20200060

58. Meng L, Liu C, Lü J, Zhao Q, Deng S, Wang G, et al. Small RNA zippers lock miRNA molecules and block miRNA function in mammalian cells. Nat Commun. 2017;8:13964. https://doi.org/10.1038/ncomms13964

59. Zhang C, Kang C, You Y, Pu P, Yang W, Zhao P, et al. Co-suppression of miR-221/222 cluster suppresses human glioma cell growth by targeting p27Kip1 in vitro and in vivo. Int J Oncol. 2009;34(6):1653–60. https://doi.org/10.3892/ijo_00000296

60. Quan J, Jin L, Pan X, He T, Lai Y, Chen P, et al. Oncogenic miR-23a-5p is associated with cellular function in RCC. Mol Med Rep. 2017;16(2):2309–17. https://doi.org/10.3892/mmr.2017.6829

61. Zhang R, Li F, Wang W, Wang X, Li S, Liu J. The effect of antisense inhibitor of miRNA 106b~25 on the proliferation, invasion, migration, and apoptosis of gastric cancer cell. Tumor Biol. 2016;37(8):10507–15. https://doi.org/10.1007/s13277-016-4937-x

62. Teplyuk NM, Uhlmann EJ, Gabriely G, Volfovsky N, Wang Y, Teng J, et al. Therapeutic potential of targeting microRNA-10b in established intracranial glioblastoma: first steps toward the clinic. EMBO Mol Med. 2016;8(3):268–87. https://doi.org/10.15252/emmm.201505495

63. Huynh C, Segura MF, Gaziel-Sovran A, Menendez S, Darvishian F, Chiriboga L, et al. Efficient in vivo microRNA targeting of liver metastasis. Oncogene. 2011;30(12):1481–8. https://doi.org/10.1038/onc.2010.523

64. Patutina OA, Gaponova (Miroshnichenko) SK, Sen’kova AV, Savin IA, Gladkikh DV, Burakova EA, et al. Mesyl phosphoramidate backbone modified antisense oligonucleotides targeting miR-21 with enhanced in vivo therapeutic potency. Proc Natl Acad Sci. 2020;117(51):32370–9. https://doi.org/10.1073/pnas.2016158117

65. Miroshnichenko SK, Patutina OA, Burakova EA, Chelobanov BP, Fokina AA, Vlassov VV, et al. Mesyl phosphoramidate antisense oligonucleotides as an alternative to phosphorothioates with improved biochemical and biological properties. Proc Natl Acad Sci USA. 2019;116(4):1229–34. https://doi.org/10.1073/pnas.1813376116

66. Gaponova S, Patutina O, Sen’kova A, Burakova E, Savin I, Markov A, et al. Single shot vs. cocktail: a comparison of mono- and combinative application of miRNA-targeted mesyl oligonucleotides for efficient antitumor therapy. Cancers (Basel). 2022;14(18):4396. https://doi.org/10.3390/cancers14184396

67. Costa PM, Cardoso AL, Custódia C, Cunha P, Pereira de Almeida L, Pedroso de Lima MC. MiRNA-21 silencing mediated by tumor-targeted nanoparticles combined with sunitinib: a new multimodal gene therapy approach for glioblastoma. J Control Release. 2015;207:31–9. https://doi.org/10.1016/j.jconrel.2015.04.002

68. Li Y, Chen Y, Li J, Zhang Z, Huang C, Lian G, et al. Co-delivery of microRNA-21 antisense oligonucleotides and gemcitabine using nanomedicine for pancreatic cancer therapy. Cancer Sci. 2017;108(7):1493–503. https://doi.org/10.1111/cas.13267

69. Tassone P, Di Martino MT, Arbitrio M, Fiorillo L, Staropoli N, Ciliberto D, et al. Safety and activity of the first-in-class locked nucleic acid (LNA) miR-221 selective inhibitor in refractory advanced cancer patients: a first-in-human, phase 1, open-label, dose-escalation study. J Hematol Oncol. 2023;16(1):68. https://doi.org/10.1186/s13045-023-01468-8

70. Gaglione M, Milano G, Chambery A, Moggio L, Romanelli A, Messere A. PNA-based artificial nucleases as antisense and anti-miRNA oligonucleotide agents. Mol Biosyst. 2011;7(8):2490–9. https://doi.org/10.1039/c1mb05131h

71. Dogandzhiyski P, Ghidini A, Danneberg F, Strömberg R, Göbel MW. Studies on tris(2-aminobenzimidazole)-PNA based artificial nucleases: a comparison of two analytical techniques. Bioconjug Chem. 2015;26(12):2514–9. https://doi.org/10.1021/acs.bioconjchem.5b00534

72. Patutina OA, Bichenkova EV, Miroshnichenko SK, Mironova NL, Trivoluzzi LT, Burusco KK, et al. miRNases: novel peptide-oligonucleotide bioconjugates that silence miR-21 in lymphosarcoma cells. Biomaterials. 2017;122:163–78. https://doi.org/10.1016/j.biomaterials.2017.01.018

73. Patutina O, Chiglintseva D, Bichenkova E, Gaponova S, Mironova N, Vlassov V, et al. Dual miRNases for triple incision of miRNA target: design concept and catalytic performance. Molecules. 2020;25(10):2459. https://doi.org/10.3390/MOLECULES25102459

74. Patutina O, Chiglintseva D, Amirloo B, Clarke D, Gaponova S, Vlassov V, et al. Bulge-forming miRNases cleave oncogenic miRNAs at the central loop region in a sequence-specific manner. Int J Mol Sci. 2022;23(12):6562. https://doi.org/10.3390/ijms23126562

75. Patutina OA, Miroshnichenko SK, Mironova NL, Sen’kova AV, Bichenkova EV, Clarke DJ, et al. Catalytic knockdown of MIR-21 by artificial ribonuclease: biological performance in tumor model. Front Pharmacol. 2019;10:879. https://doi.org/10.3389/fphar.2019.00879


Supplementary files

Review

For citations:


Miroshnichenko S.K., Patutina O.A., Zenkova M.A. miRNA-targeting oligonucleotide constructs with various mechanisms of action as effective inhibitors of carcinogenesis. Biological Products. Prevention, Diagnosis, Treatment. 2024;24(2):140-156. (In Russ.) https://doi.org/10.30895/2221-996X-2024-24-2-140-156

Views: 1692


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2221-996X (Print)
ISSN 2619-1156 (Online)