Preview

БИОпрепараты. Профилактика, диагностика, лечение

Расширенный поиск

Перспективные направления в совершенствовании вакцин для профилактики полиомиелита

https://doi.org/10.30895/2221-996X-2022-22-2-336

Полный текст:

Аннотация

Полиовирусы, принадлежащие к энтеровирусам группы С, являются причиной тяжелых поражений нервной системы. В эпоху после ликвидации полиомиелита Всемирная организация здравоохранения рекомендует для длительной эффективной защиты населения инактивированные вакцины против полиомиелита. Для обеспечения потребностей глобального здравоохранения предполагается увеличить применение традиционных и оптимизированных инактивированных вакцин против полиомиелита, а также внедрить вакцины нового типа, которые разрабатываются на основе современных представлений о РНК-содержащих вирусах. Цель работы — анализ аспектов усовершенствования вакцинных препаратов и обзор перспективных направлений развития иммунопрофилактики полиомиелита. Рассмотрены инновационные разработки на всех этапах технологического процесса, выполненные с целью получения оптимизированных вакцин, а также системы доставки вакцин. Представлена информация о новых вакцинных штаммах и клеточных линиях для производства вакцины. Обобщены результаты клинических исследований инактивированных вакцин, новых вакцин на основе генетически стабильных вакцинных штаммов вируса полиомиелита и вакцин, содержащих вирусоподобные частицы. Наиболее вероятно внедрение вакцин на основе вирусоподобных частиц генетически модифицированных штаммов вируса полиомиелита. В настоящее время многие вопросы, касающиеся актуальных направлений совершенствования иммунопрофилактики полиомиелита, являются дискуссионными и требуют решения в ближайшем будущем.

Об авторах

Е. Э. Евреинова
Федеральное государственное бюджетное учреждение «Научный центр экспертизы средств медицинского применения» Министерства здравоохранения Российской Федерации
Россия

Евреинова Елена Эдуардовна, канд. биол. наук

Петровский б-р, д. 8, стр. 2, Москва, 127051



Л. М. Хантимирова
Федеральное государственное бюджетное учреждение «Научный центр экспертизы средств медицинского применения» Министерства здравоохранения Российской Федерации
Россия

Хантимирова Лейсан Маратовна, канд. биол. наук

Петровский б-р, д. 8, стр. 2, Москва, 127051



В. А. Шевцов
Федеральное государственное бюджетное учреждение «Научный центр экспертизы средств медицинского применения» Министерства здравоохранения Российской Федерации
Россия

Шевцов Владимир Александрович, канд. мед. наук

Петровский б-р, д. 8, стр. 2, Москва, 127051



В. А. Меркулов
Федеральное государственное бюджетное учреждение «Научный центр экспертизы средств медицинского применения» Министерства здравоохранения Российской Федерации; Федеральное государственное автономное образовательное учреждение высшего образования «Первый Московский государственный медицинский университет им. И. М. Сеченова» Министерства здравоохранения Российской Федерации (Сеченовский университет)
Россия

Меркулов Вадим Анатольевич, д-р мед. наук, проф.

Петровский б-р, д. 8, стр. 2, Москва, 127051
Трубецкая ул., д. 8, стр. 2, Москва, 119991



В. П. Бондарев
Федеральное государственное бюджетное учреждение «Научный центр экспертизы средств медицинского применения» Министерства здравоохранения Российской Федерации
Россия

Бондарев Владимир Петрович, д-р мед. наук, проф.

Петровский б-р, д. 8, стр. 2, Москва, 127051



Список литературы

1. Minor PD. Live attenuated vaccines: historical successes and current challenges. Virology. 2015;479–480:379-92. https://doi.org/10.1016/j.virol.2015.03.032

2. Melnick JL. My role in the discovery and classification of the enteroviruses. Annu Rev Microbiol. 1996;50:1-24. https://doi.org/10.1146/annurev.micro.50.1.1

3. Simmonds P, Gorbalenya AE, Harvala H, Hovi T, Knowles NJ, Lindberg AM, et al. Recommendations for the nomenclature of enteroviruses and rhinoviruses. Arch Virol. 2020;165(3):793–7. https://doi.org/10.1007/s00705-019-04520-6

4. GuoH,LiY,LiuG,JiangY,ShenS,BiR,etal. A second open reading frame in human enterovirus determines viral replication in intestinal epithelial cells. Nat Commun. 2019;10:4066. https://doi.org/10.1038/s41467-019-12040-9

5. Lulla V, Dinan AM, Hosmillo M, Chaudhry Y, Sherry L, Irigoyen N, et al. An upstream protein-coding region in enteroviruses modulates virus infection in gut epithelial cells. Nat. Microbiol. 2019;4:280–92. https://doi.org/10.1038/s41564-018-0297-1

6. Agol VI, Gmyl AP. Emergency services of viral RNAs: repair and remodeling. Microbiol Mol Biol Rev. 2018;82(2):e00067–17. https://doi.org/10.1128/MMBR.00067-17

7. Domingo E, Perales C. Viral quasispecies. PLoS Genet. 2019;15(10):e1008271. https://doi.org/10.1371/journal.pgen.1008271

8. Harris KG, Coyne CB. Death waits for no man — does it wait for a virus? How enteroviruses induce and control cell death. Cytokine Growth Factor Rev. 2014;25(5):587–96. https://doi.org/10.1016/j.cytogfr.2014.08.002

9. Chen YH, Du W, Hagemeijer MC, Takvorian PM, Pau C, Cali A, et al. Phosphatidylserine vesicles enable efficient en bloc transmission of enteroviruses. Cell. 2015;160(4):619–30. https://doi.org/10.1016/j.cell.2015.01.032

10. Leeks A, Sanjuán R, West SA. The evolution of collective infectious units in viruses. Virus Res. 2019;265:94–101. https://doi.org/10.1016/j.virusres.2019.03.013

11. Yang JE, Rossignol ED, Chang D, Zaia J, Forrester I, Raja K, et al. Complexity and ultrastructure of infectious extracellular vesicles from cells infected by non-enveloped virus. Sci Rep. 2020;10(1):7939. https://doi.org/10.1038/s41598-020-64531-1

12. Neverov A, Chumakov K. Massively parallel sequencing for monitoring genetic consistency and quality control of live viral vaccines. Proc Natl Acad Sci USA. 2010;107(46):20063–8. https://doi.org/10.1073/pnas.1012537107

13. Konz JO, Schofield T, Carlyle S, Wahid R, Ansari A, Strating JRPM, et al. Evaluation and validation of next-generation sequencing to support lot release for a novel type 2 oral poliovirus vaccine. Vaccine X. 2021;8:100102. https://doi.org/10.1016/j.jvacx.2021.100102

14. Connor RI, Brickley EB, Wieland-Alter WF, Ackerman ME, Weiner JA, Modlin JF, et al. Mucosal immunity to poliovirus. Mucosal Immunol. 2022;15(1):1–9. https://doi.org/10.1038/s41385-021-00428-0

15. Ciapponi A, Bardach A, Rey Ares L, Glujovsky D, Cafferata ML, Cesaroni S, Bhatti A. Sequential inactivated (IPV) and live oral (OPV) poliovirus vaccines for preventing poliomyelitis. Cochrane Database Syst Rev. 2019;12(12):CD011260. https://doi.org/10.1002/14651858.CD011260.pub2

16. Li Li, Ivanova O, Driss N, Tiongco-Recto M, da Silva R, Shahmahmoodi S, et al. Poliovirus excretion among persons with primary immune deficiency disorders: summary of a seven-country study series. J Infect Dis. 2014;210(Suppl 1):S368–72. https://doi.org/10.1093/infdis/jiu065

17. Batson A, Federgruen A, Ganguly NK, Glassman A, Makoni S, Plotkin S. Polio eradication vaccine investment: how do we ensure polio vaccines are available to keep the world polio-free after transmission of wild poliovirus (wPV) has been interrupted? BMJ Global Health. 2021;6(11):e006447. http://dx.doi.org/10.1136/bmjgh-2021-006447

18. Modlin JF, Bandyopadhyay AS, Sutter R. Immunization against poliomyelitis and the challenges to worldwide poliomyelitis eradication. J Infect Dis. 2021;224(Suppl 4):S398–404. https://doi.org/10.1093/infdis/jiaa622

19. Duintjer Tebbens RJ, Thompson KM. Polio endgame risks and the possibility of restarting the use of oral poliovirus vaccine. Expert Rev Vaccines. 2018;17(8):739–51. https://doi.org/10.1080/14760584.2018.1506333

20. Chumakov K, Ehrenfeld E, Agol VI, Wimmer E. Polio eradication at the crossroads. Lancet Glob Health. 2021;9(8):e1172–5. https://doi.org/10.1016/S2214-109X(21)00205-9

21. Okayasu H, Sutter RW, Jafari HS, Takane M, Aylward RB. Affordable inactivated poliovirus vaccine: strategies and progress. J Infect Dis. 2014;210(Suppl 1):S459-64. https://doi.org/10.1093/infdis/jiu128

22. Jaiswal N, Singh S, Agarwal A, Chauhan A, Thumburu KK, Kaur H, Singh M. Equivalent schedules of intradermal fractional dose versus intramuscular full dose of inactivated polio vaccine for prevention of poliomyelitis. Cochrane Database Syst Rev. 2019;12(12):CD011780. https://doi.org/10.1002/14651858.CD011780.pub2

23. Anand A, Molodecky NA, Pallansch MA, Sutter RW. Immunogenicity to poliovirus type 2 following two doses of fractional intradermal inactivated poliovirus vaccine: a novel dose sparing immunization schedule. Vaccine. 2017;35(22):2993–8. https://doi.org/10.1016/j.vaccine.2017.03.008

24. Sáez-Llorens X, Thierry-Carstensen B, Stoey LS, Sørensen C, Wachmann H, Bandyopadhyay AS, et al. Immunogenicity and safety of an adjuvanted inactivated polio vaccine, IPV-Al, following vaccination in children at 2, 4, 6 and at 15–18 months. Vaccine. 2020;38(21):3780–9. https://doi.org/10.1016/j.vaccine.2020.02.066

25. He P, Zou Y, Hu Z. Advances in aluminum hydroxide-based adjuvant research and its mechanism. Hum Vaccin Immunother. 2015;11(2):477–88. https://doi.org/10.1080/21645515.2014.1004026

26. Kraan H, van Herpen P, Kersten G, Amorij JP. Development of thermostable lyophilized inactivated polio vaccine. Pharm Res. 2014;31(10):2618–29. https://doi.org/10.1007/s11095-014-1359-6

27. Tzeng SY, McHugh KJ, Behrens AM, Rose S, Sugarman JL, Ferber S, et al. Stabilized single-injection inactivated polio vaccine elicits a strong neutralizing immune response. Proc Natl Acad Sci USA. 2018;115(23):E5269–78. https://doi.org/10.1073/PNAS.1720970115

28. Kolluru C, Gomaa Y, Prausnitz MR. Development of a thermostable microneedle patch for polio vaccination. Drug Deliv and Transl Res. 2019;9:192–203. https://doi.org/10.1007/s13346-018-00608-9

29. Wan Y, Hickey JM, Bird C, Witham K, Fahey P, Forster A, et al. Development of stabilizing formulations of a trivalent inactivated poliovirus vaccine in a dried state for delivery in the NanopatchTM microprojection array. J Pharm Sci. 2018;107(6):1540–51. https://doi.org/10.1016/J.XPHS.2018.01.027

30. Muller DA, Henricson J, Baker, SB. Togö T, Flores CMJ, Lemaire PA, et al. Innate local response and tissue recovery following application of high density microarray patches to human skin. Sci Rep. 2020;10:18468. https://doi.org/10.1038/s41598-020-75169-4

31. Anand A, Zaman K, Estivariz CF, Yunus M, Gary HE, Weldon WC, et al. Early priming with inactivated poliovirus vaccine (IPV) and intradermal fractional dose IPV administered by a microneedle device: a randomized controlled trial. Vaccine. 2015;33(48):6816–22. https://doi.org/10.1016/j.vaccine.2015.09.039

32. Barrett PN, Mundt W, Kistner O, Howard MK. Vero cell platform in vaccine production: moving towards cell culture-based viral vaccines. Expert Rev Vaccines. 2009;8(5):607–18. https://doi.org/10.1586/erv.09.19

33. Jordan I, Sandig V. Matrix and backstage: cellular substrates for viral vaccines. Viruses. 2014;6(4):1672-700. https://doi.org/10.3390/v6041672

34. Merten OW. Advances in cell culture: anchorage dependence. Philos Trans R Soc Lond B Biol Sci. 2015;370(1661):20140040. https://doi.org/10.1098/rstb.2014.0040

35. Jiang Y, van der Welle JE, Rubingh O, van Eikenhorst G, Bakker WAM, Thomassen YE. Kinetic model for adherent Vero cell growth and poliovirus production in batch bioreactors. Process Biochem. 2019;81:156–64. https://doi.org/10.1016/j.procbio.2019.03.010

36. Shen CF, Guilbault C, Li X, Elahi SM, Ansorge S, Kamen A, Gilbert R. Development of suspension adapted Vero cell culture process technology for production of viral vaccines. Vaccine. 2019;37(47):6996-7002. https://doi.org/10.1016/j.vaccine.2019.07.003

37. Andreani NA, Renzi S, Piovani G, Ajmone Marsan P, Bomba L, Villa R, et al. Potential neoplastic evolution of Vero cells: in vivo and in vitro characterization. Cytotechnology. 2017;69(5):741–50. https://doi.org/10.1007/s10616-017-0082-7

38. Osada N, Kohara A, Yamaji T, Hirayama N, Kasai F, Sekizuka T, et al. The genome landscape of the African green monkey kidney-derived Vero cell line. DNA Research. 2014;21(6):673–83. https://doi.org/10.1093/dnares/dsu029

39. van der Sanden SM, Wu W, Dybdahl-Sissoko N, Weldon WC, Brooks P, O’Donnell J, et al. Engineering enhanced vaccine cell lines to eradicate vaccine-preventable diseases: the polio end game. J Virol. 2015;90(4):1694–704. https://doi.org/10.1128/JVI.01464-15

40. Sanders BP, Oakes Ide L, van Hoek V, Liu Y, Marissen W, Minor PD, et al. Production of high titer attenuated poliovirus strains on the serum-free PER.C6® cell culture platform for the generation of safe and affordable next generation IPV. Vaccine. 2015;33(48):6611–6. https://doi.org/10.1016/j.vaccine.2015.10.091

41. Leroux-Roels I, Leroux-Roels G, Shukarev G, Schuitemaker H, Cahill C, de Rooij R, et al. Safety and immunogenicity of a new Sabin inactivated poliovirus vaccine candidate produced on the PER.C6® cell-line: a phase 1 randomized controlled trial in adults. Hum Vaccin Immunother. 2021;17(5):1366–73. https://doi.org/10.1080/21645515.2020.1812315

42. Verdijk P, Rots NY, Bakker WA. Clinical development of a novel inactivated poliomyelitis vaccine based on attenuated Sabin poliovirus strains. Expert Rev Vaccines. 2011;10(5):635–44. https://doi.org/10.1586/erv.11.51

43. Аbd-Elghaffar AA, Rashed ME, Ali AE, Amin MA. In-Vitro inactivation of Sabin-polioviruses for development of safe and effective polio vaccine. Vaccines. 2020;8(4):601. https://doi.org/10.3390/vaccines8040601

44. Tobin GJ, Tobin JK, Gaidamakova EK, Wiggins TJ, Bushnell RV, Lee WM, et al. A novel gamma radiation-inactivated sabin-based polio vaccine. PLoS One. 2020;15(1):e0228006. https://doi.org/10.1371/journal.pone.0228006

45. Thomassen YE, van ’t Oever AG, van Oijen MG, Wijffels RH, van der Pol LA, Bakker WA. Next generation inactivated polio vaccine manufacturing to support post polio-eradication biosafety goals. PLoS One. 2013;8(12):e83374. https://doi.org/10.1371/journal.pone.0083374

46. Okayasu H, Sein C, Hamidi A, Bakker W, Sutter R. Development of inactivated poliovirus vaccine from Sabin strains: a progress report. Biologicals. 2016;44(6):581–7. https://doi.org/10.1016/j.biologicals.2016.08.005

47. Sutter RS, Okayasu H, Kieny M. Next generation inactivated poliovirus vaccine: the future has arrived. Clin Infect Dis. 2017;64(10):1326–7. https://doi.org/10.1093/cid/cix116

48. Jiang R, Liu X, Sun X, Wang J, Huang Z, Li C, et al. Immunogenicity and safety of the inactivated poliomyelitis vaccine made from Sabin strains in a phase IV clinical trial for the vaccination of a large population. Vaccine. 2021;39(9):1463–71. https://doi.org/10.1016/j.vaccine.2021.01.027

49. Wang Y, Xu Q, Jeyaseelan V, Ying Z, Mach O, Sutter R, Wen N, et al. Immunogenicity of two-dose and three-dose vaccination schedules with Sabin inactivated poliovirus vaccine in China: an open-label, randomized, controlled trial. Lancet Reg Health West Pac. 2021;10:100133. https://doi.org/10.1016/j.lanwpc.2021.100133

50. Piniaeva A, Ignatyev G, Kozlovskaya L, Ivin Y, Kovpak A, Ivanov A, et al. Immunogenicity and safety of inactivated Sabin-strain polio vaccine “PoliovacSin”: clinical trials phase I and II. Vaccines. 2021;9(6):565. https://doi.org/10.3390/vaccines9060565

51. Modlin JF, Chumakov K. Sabin strain inactivated polio vaccine for the polio endgame. J Infect Dis. 2020;221(4):504–5. https://doi.org/10.1093/infdis/jiz077

52. Clements JD, Freytag LC. Parenteral vaccination can be an effective means of inducing protective mucosal responses. Clin Vaccine Immunol. 2016;23(6):438–41. https://doi.org/10.1128/CVI.00214-16

53. Kraan H, Soema P, Amorij JP, Kersten G. Intranasal and sublingual delivery of inactivated polio vaccine. Vaccine. 2017;35(20):2647–53. https://doi.org/10.1016/j.vaccine.2017.03.090

54. Dietrich J, Andreasen LV, Andersen P, Agger EM. Inducing dose sparing with inactivated polio virus formulated in adjuvant CAF01. PLoS One. 2014;9(6):e100879. https://doi.org/10.1371/journal.pone.0100879

55. Norton EB, Bauer DL, Weldon WC, Oberste MS, Lawson LB, Clements JD. The novel adjuvant dmLT promotes dose sparing, mucosal immunity and longevity of antibody responses to the inactivated polio vaccine in a murine model. Vaccine. 2015;33(16):1909-15. https://doi.org/10.1016/j.vaccine.2015.02.069

56. White JA, Blum JS, Hosken NA, Marshak JO, Duncan L, Zhu C, et al. Serum and mucosal antibody responses to inactivated polio vaccine after sublingual immunization using a thermoresponsive gel delivery system. Hum Vaccin Immunother. 2014;10(12):3611–21. https://doi.org/10.4161/hv.32253

57. Ivanov AP, Dragunsky EM, Chumakov KM. 1,25-dihydroxyvitamin D3 enhances systemic and mucosal immune responses to inactivated poliovirus vaccine in mice. J Infect Dis. 2006;193(4):598–600. https://doi.org/10.1086/499970

58. Chan HT, Xiao Y, Weldon WC, Oberste SM, Chumakov K, Daniell H. Cold chain and virus-free chloroplast-made booster vaccine to confer immunity against different poliovirus serotypes. Plant Biotechnol J. 2016;14(11):2190-200. https://doi.org/10.1111/pbi.12575

59. Yeh MT, Bujaki E, Dolan PT, Smith M, Wahid R, Konz J, et al. Engineering the live-attenuated polio vaccine to prevent reversion to virulence. Cell Host Microbe. 2020;27(5):736–51.e8. https://doi.org/10.1016/j.chom.2020.04.003

60. Sanders BP, de Los Rios Oakes I, van Hoek V, Bockstal V, Kamphuis T, Uil TG, et al. Cold-adapted viral attenuation (CAVA): highly temperature sensitive polioviruses as novel vaccine strains for a next generation inactivated poliovirus vaccine. PLoS Pathog. 2016;12(3):e1005483. https://doi.org/10.1371/journal.ppat.1005483

61. Knowlson S, Burlison J, Giles E, Fox H, Macadam AJ, Minor PD. New strains intended for the production of inactivated polio vaccine at low-containment after eradication. PLoS Pathog. 2015;11(12):e1005316. https://doi.org/10.1371/journal.ppat.1005316

62. Fox H, Knowlson S, Minor PD, Macadam AJ. Genetically thermo-stabilised, immunogenic poliovirus empty capsids; a strategy for non-replicating vaccines. PLoS Pathog. 2017;13(1):e1006117. https://doi.org/10.1371/journal.ppat.1006117

63. Bahar MW, Porta C, Fox H, Macadam AJ, Fry EE, Stuart DI. Mammalian expression of virus-like particles as a proof of principle for next generation polio vaccines. NPJ Vaccines. 2021;6(1):5. https://doi.org/10.1038/s41541-020-00267-3

64. Viktorova EG, Khattar SK, Kouiavskaia D, Laassri M, Zagorodnyaya T, Dragunsky E, et al. Newcastle disease virus-based vectored vaccine against poliomyelitis. J Virol. 2018;92(17):e00976–18. https://doi.org/10.1128/JVI.00976-18

65. Сhan RWY, Liu S, Cheung JY, Tsun JGS, Chan KC, Chan KYY, et al. The mucosal and serological immune responses to the novel coronavirus (SARS-CoV-2) vaccines. Front Immunol. 2021;12:744887. https://doi.org/10.3389/fimmu.2021.744887

66. Pardi N, Hogan M, Porter F, Weissman D, et al. mRNA vaccines — a new era in vaccinology. Nat Rev Drug Discov. 2018;17(4):261–79. https://doi.org/10.1038/nrd.2017.243


Рецензия

Для цитирования:


Евреинова Е.Э., Хантимирова Л.М., Шевцов В.А., Меркулов В.А., Бондарев В.П. Перспективные направления в совершенствовании вакцин для профилактики полиомиелита. БИОпрепараты. Профилактика, диагностика, лечение. 2022;22(2):142-153. https://doi.org/10.30895/2221-996X-2022-22-2-336

For citation:


Evreinova E.E., Khantimirova L.M., Shevtsov V.A., Merkulov V.A., Bondarev V.P. Promising opportunities to improve polio vaccines. Biological Products. Prevention, Diagnosis, Treatment. 2022;22(2):142-153. (In Russ.) https://doi.org/10.30895/2221-996X-2022-22-2-336

Просмотров: 163


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2221-996X (Print)
ISSN 2619-1156 (Online)