Preview

Biological Products. Prevention, Diagnosis, Treatment

Advanced search

Optimisation of culture conditions for a producer clone coexpressing arylsulfatase B and a formylglycine-generating enzyme in order to increase the yield of arylsulfatase B

https://doi.org/10.30895/2221-996X-2022-22-3-279-292

Abstract

Maroteaux—Lamy syndrome (mucopolysaccharidosis type VI) is an orphan genetic disease caused by mutations in the arylsulfatase B gene (ARSB), which encodes the lysosomal enzyme arylsulfatase B (ASB). The relevance of the study lies in the need of a Russian recombinant ASB product for patients with the disease in the Russian Federation. Previously, the authors have developed producer lines coexpressing the target ASB enzyme with an auxiliary formylglycine-generating enzyme (FGE), based on Chinese hamster ovary (CHO) cells. Further development of the recombinant ASB preparation places priority on increasing the enzyme yield. The aim of this study was to increase the productivity of producer clones by optimising the culture process and adding calcium chloride and copper sulfate to the culture medium. Materials and methods: a suspension-adapted CHO cell line was used. Monoclonal cell lines were developed using Cell Metric and ClonePix FL systems. The concentration of ASB in the culture liquid was determined using the enzyme-linked immunosorbent assay (ELISA). The authors analysed batch culture and/or fed-batch culture in media supplemented with various concentrations of copper sulfate and calcium chloride. Results: the combined addition of copper sulfate and calcium chloride at concentrations of 300 μM during batch culture of producer clones coexpressing ASB and FGE increases viability and specific productivity of the cells up to 4.58±1.62 pg/ (cell×day). The cultivation of the lead producer clone coexpressing ASB and FGE under fed-batch conditions for 12 days and the addition of copper sulfate to the growth medium at the concentration of 300 μM allow for increasing the yield of the active lysosomal enzyme, arylsulfatase B, to 420 mg/L. Conclusions: the cultivation of producer clones coexpressing ASB and FGE under fed-batch conditions with copper sulfate added to the medium significantly improves cell line growth properties and the ASB yield. This approach to the selection of culture conditions for producer cell lines can be applied to other enzymes of the sulfatase family.

About the Authors

S. S. Timonova
GENERIUM, JSC
Russian Federation

Sofia S. Timonova

14 Vladimirskaya St., Volginsky town, Petushinskiy District, Vladimir Region 601125



K. A. Smolova
GENERIUM, JSC
Russian Federation

Kseniya A. Smolova, Cand. Sci. (Chem.)

14 Vladimirskaya St., Volginsky town, Petushinskiy District, Vladimir Region 601125



I. A. Kirik
GENERIUM, JSC
Russian Federation

Inessa A. Kirik, Cand. Sci. (Biol.)

14 Vladimirskaya St., Volginsky town, Petushinskiy District, Vladimir Region 601125



M. S. Pantyushenko
GENERIUM, JSC
Russian Federation

Marina S. Pantyushenko, Cand. Sci. (Biol.)

14 Vladimirskaya St., Volginsky town, Petushinskiy District, Vladimir Region 601125



R. L. Anisimov
GENERIUM, JSC
Russian Federation

Roman L. Anisimov, Cand. Sci. (Biol.)

14 Vladimirskaya St., Volginsky town, Petushinskiy District, Vladimir Region 601125



R. A. Khamitov
GENERIUM, JSC
Russian Federation

Ravil A. Khamitov, Dr. Sci. (Med.), Professor

14 Vladimirskaya St., Volginsky town, Petushinskiy District, Vladimir Region 601125



A. A. Piskunov
GENERIUM, JSC
Russian Federation

Aleksandr A. Piskunov, Cand. Sci. (Biol.)

14 Vladimirskaya St., Volginsky town, Petushinskiy District, Vladimir Region 601125



V. N. Bade
GENERIUM, JSC
Russian Federation

Veronika N. Bade, Cand. Sci. (Biol.)

14 Vladimirskaya St., Volginsky town, Petushinskiy District, Vladimir Region 601125



References

1. Remondino RG, Tello CA, Noel M, Wilson AF, Galaretto E, Bersusky E, Piantoni L. Clinical manifestations and surgical management of spinal lesions in patients with mucopolysaccharidosis: a report of 52 cases. Spine Deform. 2019;7(2):298–303. https://doi.org/10.1016/j.jspd.2018.07.005

2. Mikami T, Kitagawa H. Biosynthesis and degradation of glycans of the extracellular matrix: sulfated glycosaminoglycans, hyaluronan, and matriglycan. In: Barchi JJ, ed. Comprehensive Glycoscience. 2nd ed. Elsevier B.V.; 2021. P. 29–62. https://doi.org/10.1016/B978-0-12-819475-1.00018-3

3. Mehta A, Winchester B, eds. Lysosomal Storage Disorders: A Practical Guide. John Wiley & Sons, Ltd.; 2012. https://doi.org/10.1002/9781118514672

4. Harmatz P, Hendriksz CJ, Lampe C, McGill JJ, Parini R, Leão-Teles E, et al. The effect of galsulfase enzyme replacement therapy on the growth of patients with mucopolysaccharidosis VI (Maroteaux-Lamy syndrome). Mol Genet Metab. 2017;122(1–2):107–12. https://doi.org/10.1016/j.ymgme.2017.03.008

5. Garcia P, Phillips D, Johnson J, Martin K, Randolph LM, Rosenfeld H, Harmatz P. Long-term outcomes of patients with mucopolysaccharidosis VI treated with galsulfase enzyme replacement therapy since infancy. Mol Genet Metab. 2021;133(1):100–8. https://doi.org/10.1016/j.ymgme.2021.03.006

6. de Ruijter J, de Ru MH, Wagemans T, Ijlst L, Lund AM, Orchard PJ, at al. Heparan sulfate and dermatan sulfate derived disaccharides are sensitive markers for newborn screening for mucopolysaccharidoses types I, II and III. Mol Genet Metab. 2012;107(4):705– 10. https://doi.org/10.1016/j.ymgme.2012.09.024

7. Baenziger JU. A major step on the road to understanding a unique posttranslational modification and its role in a genetic disease. Cell. 2003;113(4):421–2. https://doi.org/10.1016/S0092-8674(03)00354-4

8. Peng J, Alam S, Radhakrishnan K, Mariappan M, Rudolph MG, May C, et al. Eukaryotic formylglycine-generating enzyme catalyses a monooxygenase type of reaction. FEBS J. 2015;282(17):3262–74. https://doi.org/10.1111/febs.13347

9. Appel MJ, Bertozzi CR. Formylglycine, a post-translationally generated residue with unique catalytic capabilities and biotechnology applications. ACS Chem Biol. 2015;10(1):72–84. https://doi.org/10.1021/cb500897w

10. Dierks T, Miech C, Hummerjohann J, Schmidt B, Kertesz MA, von Figura K. Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine. J Biol Chem. 1998;273(40):25560–4. https://doi.org/10.1074/jbc.273.40.25560

11. Bond CS, Clements PR, Ashby SJ, Collyer CA, Harrop SJ, Hopwood JJ, Guss JM. Structure of a human lysosomal sulfatase. Structure. 1997;5(2):277–89. https://doi.org/10.1016/s0969-2126(97)00185-8

12. Dierks T, Dickmanns A, Preusser-Kunze A, Schmidt B, Mariappan M, von Figura K, et al. Molecular basis for multiple sulfatase deficiency and mechanism for formylglycine generation of the human formylglycine-generating enzyme. Cell. 2005;121(4):541–52. https://doi.org/10.1016/j.cell.2005.03.001

13. Dickmanns A, Schmidt B, Rudolph MG, Mariappan M, Dierks T, von Figura K, Ficner R. Crystal structure of human pFGE, the paralog of the Calpha-formylglycine-generating enzyme. J Biol Chem. 2005;280(15):15180–7. https://doi.org/10.1074/jbc.M414317200

14. Mariappan M, Preusser-Kunze A, Balleininger M, Eiselt N, Schmidt B, Gande SL, et al. Expression, localization, structural, and functional characterization of pFGE, the paralog of the Cα-formylglycine-generating enzyme. J Biol Chem. 2005;280(15):15173–9. https://doi.org/10.1074/jbc.M413698200

15. Ghosh D. Three-dimensional structures of sulfatases. Methods Enzymol. 2005;400:273–93. https://doi.org/10.1016/S0076-6879(05)00016-9

16. Holder PG, Jones LC, Drake PM, Barfield RM, Bañas S, de Hart GW, et al. Reconstitution of formylglycine-generating enzyme with copper(II) for aldehyde tag conversion. J Biol Chem. 2015;290(25):15730–45. https://doi.org/10.1074/jbc.M115.652669

17. Appel MJ, Meier KK, Lafrance-Vanasse J, Lim H, Tsai CL, Hedman B, et al. Formylglycine-generating enzyme binds substrate directly at a mononuclear Cu(I) center to initiate O2 activation. Proc Natl Acad Sci USA. 2019;116(12):5370–5. https://doi.org/10.1073/pnas.1818274116

18. York D, Baker J, Holder PG, Jones LC, Drake PM, Barfield RM, et al. Generating aldehyde-tagged antibodies with high titers and high formylglycine yields by supplementing culture media with copper(II). BMC Biotechnol. 2016;16:23. https://doi.org/10.1186s12896-016-0254-0

19. Knop M, Dang TQ, Jeschke G, Seebeck FP. Copper is a cofactor of the formylglycine-generating enzyme. Chembiochem. 2017;18(2):161–5. https://doi.org/10.1002/cbic.201600359

20. Roeser D, Preusser-Kunze A, Schmidt B, Gasow K, Wittmann JG, Dierks T, et al. A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme. Proc Natl Acad Sci USA. 2006;103(1):81–6. https://doi.org/10.1073/pnas.0507592102

21. Schlotawa L, Wachs M, Bernhard O, Mayer FJ, Dierks T, Schmidt B, Radhakrishnan K. Recognition and ER quality control of misfolded formylglycine-generating enzyme by protein disulfide isomerase. Cell Rep. 2018;24(1):27–37.e4. https://doi.org/10.1016/j.celrep.2018.06.016

22. Timonova SS, Smolova KA, Zaripova DT, Pantyushenko MS, Koroleva MA, Anisimov RL, et al. Increasing productivity of arylsulfatase B-producing cell line by coexpression of formylglycine-generating enzyme. BIOpreparaty. Profilaktika, diagnostika, lechenie = Biological Products. Prevention, Diagnosis, Treatment. 2022;22(1):80– 93 (In Russ.) https://doi.org/10.30895/2221996X-2022-22-1-80-93

23. Timonova SS, Pantyushenko MS, Tikhonov RV, Piskunov AA, Bade VN. Optimization of the cultivation process of a producer clone of the recombinant lysosomal iduronate-2-sulfatase enzyme. Biotekhnologiya = Biotechnology. 2021;37(2):34–47 (In Russ.) https://doi.org/10.21519/0234–2758–2021–37–2–34–47

24. Muralidharan-Chari V, Wurz Z, Doyle F, Henry M, Diendorfer A, Tenenbaum SA, et al. PTSelect™: a post-transcriptional technology that enables rapid establishment of stable CHO cell lines and surveillance of clonal variation. J Biotechnol. 2021;325:360– 71. https://doi.org/10.1016/j.jbiotec.2020.09.025

25. Christianson TM, Starr CM, Zankel TC. Overexpression of inactive arylsulphatase mutants and in vitro activation by light-dependent oxidation with vanadate. Biochem J. 2004;382(2):581–7. https://doi.org/10.1042/BJ20040447

26. Gupta SK, Srivastava SK, Sharma A, Nalage VHH, Salvi D, Kushwaha H, et al. Metabolic engineering of CHO cells for the development of a robust protein production platform. PLoS One. 2017;12(8):e0181455. https://doi.org/10.1371/journal.pone.0181455

27. Mulukutla BC, Yongky A, Le T, Mashek DG, Hu WS. Regulation of glucose metabolism — a perspective from cell bioprocessing. Trends Biotechnol. 2016;34(8):638–51. https://doi.org/10.1016/j.tibtech.2016.04.012

28. Tsao YS, Cardoso AG, Condon RG, Voloch M, Lio P, Lagos JC, et al. Monitoring Chinese hamster ovary cell culture by the analysis of glucose and lactate metabolism. J Biotechnol. 2005;118(3):316–27. https://doi.org/10.1016/j.jbiotec.2005.05.016

29. Martínez-Monge I, Comas P, Triquell J, Casablancas A, Lecina M, Paredes CJ, Cairó JJ. Concomitant consumption of glucose and lactate: a novel batch production process for CHO cells. Biochem Eng J. 2019;151:107358. https://doi.org/10.1016/j.bej.2019.107358

30. Qian Y, Khattak SF, Xing Z, He A, Kayne PS, Qian NX, et al. Cell culture and gene transcription effects of copper sulfate on Chinese hamster ovary cells. Biotechnol Prog. 2011;27(4):1190–4. https://doi.org/10.1002/btpr.630


Supplementary files

Review

For citations:


Timonova S.S., Smolova K.A., Kirik I.A., Pantyushenko M.S., Anisimov R.L., Khamitov R.A., Piskunov A.A., Bade V.N. Optimisation of culture conditions for a producer clone coexpressing arylsulfatase B and a formylglycine-generating enzyme in order to increase the yield of arylsulfatase B. Biological Products. Prevention, Diagnosis, Treatment. 2022;22(3):279-292. (In Russ.) https://doi.org/10.30895/2221-996X-2022-22-3-279-292

Views: 533


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2221-996X (Print)
ISSN 2619-1156 (Online)