Preview

Biological Products. Prevention, Diagnosis, Treatment

Advanced search

Increasing productivity of arylsulfatase B-producing cell line by coexpression of formylglycine-generating enzyme

https://doi.org/10.30895/2221-996X-2022-22-1-80-93

Abstract

Mucopolysaccharidosis type VI (Maroteaux–Lamy syndrome) is an orphan genetic disease caused by deficiency of the lysosomal enzyme arylsulfatase B (ASB). The need to develop a highly productive cell line for the production of recombinant ASB, is behind the concept and relevance of this study. The most promising approach seems to be the development of CHO producer cell lines coexpressing the target ASB enzyme and an auxiliary formylglycine-generating enzyme (FGE). At the same time, it is important from a practical perspective to have the possibility of cultivating producer cell lines as suspensions free of serum or other components of animal origin. The aim of the study was to develop highly productive cell lines for the production of recombinant ASB by coexpression of the auxiliary FGE. Materials and methods: a suspension CHO cell line was used in the study. CHO cells were transfected by electroporation using the MaxCyte STX system. Monoclonal cell lines were obtained with the help of the Cell Metric system. Enzyme-linked immunosorbent assay was used for determination of ASB concentration in the culture fluid. Culture fluid samples were analysed using polyacrylamide gel electrophoresis and Western blotting. The mRNA level was measured by real-time polymerase chain reaction. Results: producer cell lines coexpressing the target ASB enzyme and auxiliary FGE were obtained. An increase in the yield of the active target ASB enzyme from 2 to 100 mg/L was achieved by selecting the optimal ratio of plasmids during transfection. The highest yield of the target ASB enzyme was achieved at the 90:10 ratio (%) of plasmids encoding the ASB and FGE genes, respectively. Conclusions: the authors developed highly productive cell lines for the production of recombinant ASB, which coexpress the target and auxiliary enzymes. The coexpression of ASB and FGE improves the growth and production characteristics of the cell line, probably due to the modification of the ASB active site. The obtained results will help resolve the problem of low enzyme yield, which is typical of this class of medicines.

About the Authors

S. S. Timonova
JSC “GENERIUM”
Russian Federation

Sofia S. Timonova

14 Vladimirskaya St., Volginsky town, Petushinskiy District, Vladimir Region 601125



K. A. Smolova
JSC “GENERIUM”
Russian Federation

Kseniya A. Smolova, Cand. Sci. (Chem.)

14 Vladimirskaya St., Volginsky town, Petushinskiy District, Vladimir Region 601125



D. T. Zaripova
JSC “GENERIUM”
Russian Federation

Doliya Т. Zaripova

14 Vladimirskaya St., Volginsky town, Petushinskiy District, Vladimir Region 601125



M. S. Pantyushenko
JSC “GENERIUM”
Russian Federation

Marina S. Pantyushenko, Cand. Sci. (Biol.)

14 Vladimirskaya St., Volginsky town, Petushinskiy District, Vladimir Region 601125



M. A. Koroleva
JSC “GENERIUM”
Russian Federation

Mariya A. Koroleva

14 Vladimirskaya St., Volginsky town, Petushinskiy District, Vladimir Region 601125



R. L. Anisimov
JSC “GENERIUM”
Russian Federation

Roman L. Anisimov, Cand. Sci. (Biol.)

14 Vladimirskaya St., Volginsky town, Petushinskiy District, Vladimir Region 601125



R. A. Khamitov
JSC “GENERIUM”
Russian Federation

Ravil A. Khamitov, Dr. Sci. (Med.), Professor

14 Vladimirskaya St., Volginsky town, Petushinskiy District, Vladimir Region 601125



A. A. Piskunov
JSC “GENERIUM”
Russian Federation

Aleksandr A. Piskunov, Cand. Sci. (Biol.)

14 Vladimirskaya St., Volginsky town, Petushinskiy District, Vladimir Region 601125



V. N. Bade
JSC “GENERIUM”
Russian Federation

Veronika N. Bade, Cand. Sci. (Biol.) 

14 Vladimirskaya St., Volginsky town, Petushinskiy District, Vladimir Region 601125



References

1. Mikami T, Kitagawa H. Biosynthesis and degradation of glycans of the extracellular matrix: sulfated glycosaminoglycans, hyaluronan, and matriglycan. In: Barchi JJ, ed. Comprehensive Glycoscience. 2nd ed. Elsevier B.V.; 2021. P. 29–62. https://doi.org/10.1016/B978-0-12-819475-1.00018-3

2. Matalon R, Matalon KM, Radhakrishnan GL. Chapter 35. The mucopolysaccharidoses. In: Rosenberg RN, Pascual JM, eds. Rosenberg’s Molecular and Genetic Basis of Neurological and Psychiatric Disease. 5th ed. Elsevier Inc.; 2015. P. 347–63. https://doi.org/10.1016/B978-0-12-410529-4.00031-0

3. Pastores GM. Lysosomal Storage Disorders: Principles and Practice. World Scientific; 2009. https://doi.org/10.1142/7250

4. Mehta A, Winchester B, eds. Lysosomal Storage Disorders: A Practical Guide. John Wiley & Sons, Ltd.; 2012. https://doi.org/10.1002/9781118514672

5. Remondino RG, Tello CA, Noel M, Wilson AF, Galaretto E, Bersusky E, Piantoni L. Clinical manifestations and surgical management of spinal lesions in patients with mucopolysaccharidosis: a report of 52 cases. Spine Deform. 2019;7(2):298–303. https://doi.org/10.1016/j.jspd.2018.07.005

6. Vollebregt AAM, Hoogeveen-Westerveld M, Kroos MA, Oussoren E, Plug I, Ruijter GJ, at al. Genotype–phenotype relationship in mucopolysaccharidosis II: predictive power of IDS variants for the neuronopathic phenotype. Dev Med Child Neurol. 2017;59(10):1063–70. https://doi.org/10.1111/dmcn.13467

7. Burrow TA, Leslie ND. Review of the use of idursulfase in the treatment of mucopolysaccharidosis II. Biologics. 2008;2(2):311–20.

8. Harmatza P, Hendriksz CJ, Lampe C, McGill JJ, Parini R, Leão-Teles E, et al. The effect of galsulfase enzyme replacement therapy on the growth of patients with mucopolysaccharidosis VI (Maroteaux-Lamy syndrome). Mol Genet Metab. 2017;122(1-2):107–12. https://doi.org/10.1016/j.ymgme.2017.03.008

9. Harmatz P, Giugliani R, D Schwartz IV, Guffon N, Teles EL, Miranda MCS, et al. MPS VI Study Group. Longterm follow-up of endurance and safety outcomes during enzyme replacement therapy for mucopolysaccharidosis VI: Final results of three clinical studies of recombinant human N-acetylgalactosamine 4-sulfatase. Mol Genet Metab. 2008;94(4):469–75. https://doi.org/10.1016/j.ymgme.2008.04.001

10. Wiegmann EМ, Westendorf E, Kalus I, Pringle TH, Lübke T, Dierks T. Arylsulfatase K, a novel lysosomal sulfatase. J Biol Chem. 2013;288(42):30019–28. https://doi.org/10.1074/jbc.M113.499541

11. Ghosh D. Three-dimensional structures of sulfatases. Methods Enzymol. 2005;400:273–93. https://doi.org/10.1016/S0076-6879(05)00016-9

12. Ruijter J, de Ru MH, Wagemans T, Ijlst L, Lund AM, Orchard PJ, at al. Heparan sulfate and dermatan sulfate derived disaccharides are sensitive markers for newborn screening for mucopolysaccharidoses types I, II and III. Mol Genet Metab. 2012;107(4):705–10.https://doi.org/10.1016/j.ymgme.2012.09.024

13. Reed MJ, Purohit A, Woo LWL, Newman SP, Potter BVL. Steroid sulfatase: molecular biology, regulation, and inhibition. Endocr Rev. 2005;26(2):171–202. https://doi.org/10.1210/er.2004-0003

14. Peng J, Alam S, Radhakrishnan K, Mariappan M, Rudolph MG, May C, et al. Eukaryotic formylglycine-generating enzyme catalyses a monooxygenase type of reaction. FEBS J. 2015;282(17):3262–74. https://doi.org/10.1111/febs.13347

15. Appel MJ, Bertozzi CR. Formylglycine, a post-translationally generated residue with unique catalytic capabilities and biotechnology applications. ACS Chem Biol. 2015;10(1):72–84. https://doi.org/10.1021/cb500897w

16. Dierks T, Miech C, Hummerjohann J, Schmidt B, Kertesz MA, von Figura K. Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine. J Biol Chem. 1998;273(40):25560–4. https://doi.org/10.1074/jbc.273.40.25560

17. Dierksa T, Schlotawa L, Frese M-A, Radhakrishnan K, von Figura K, Schmidt B. Molecular basis of multiple sulfatase deficiency, mucolipidosis II/III and Niemann–Pick C1 disease — lysosomal storage disorders caused by defects of non-lysosomal proteins. Biochim Biophys Acta. 2009;1793(4):710–25. https://doi.org/10.1016/j.bbamcr.2008.11.015

18. Diez-Roux G, Ballabio A. Sulfatases and human disease. Annu Rev Genomics Hum Genet. 2005;6:355–79. https://doi.org/10.1146/annurev.genom.6.080604.162334

19. Demydchuk M, Hill CH, Zhou A, Bunkóczi G, Stein PE, Marchesanet D, at al. Insights into Hunter syndrome from the structure of iduronate-2-sulfatase. Nat Commun. 2017;8:15786. https://doi.org/10.1038/ncomms15786

20. Ulmer JE, Vilén EM, Namburi RB, Benjdia A, Beneteau J, Malleron A, et al. Characterization of glycosaminoglycan (GAG) sulfatases from the human gut symbiont Bacteroides thetaiotaomicron reveals the first GAG-specific bacterial endosulfatase. J Biol Chem. 2014;289(35):24289–303. https://doi.org/10.1074/jbc.M114.573303

21. Dierks T., Dickmanns A., Preusser-Kunze A., Schmidt B., Mariappan M., Figura K, et al. Molecular basis for multiple sulfatase deficiency and mechanism for formylglycine generation of the human formylglycine-generating enzyme. Cell. 2005;121(4):541–52. https://doi.org/10.1016/j.cell.2005.03.001

22. Dickmanns A, Schmidt B, Rudolph MG, Mariappan M, Dierks T, Figura K, Ficner R. Crystal structure of human pFGE, the paralog of the Calpha-formylglycine-generating enzyme. J Biol Chem. 2005;280(15):15180–7. https://doi.org/10.1074/jbc.M414317200

23. Mariappan M, Preusser-Kunze A, Balleininger M, Eiselt N, Schmidt B, Gande SL, et al. Expression, localization, structural, and functional characterization of pFGE, the paralog of the Cα-formylglycine-generating enzyme. J Biol Chem. 2005;280(15):15173–9.https://doi.org/10.1074/jbc.M413698200

24. Sardiello M, Annunziata I, Roma G, Ballabio A. Sulfatases and sulfatase modifying factors: an exclusive and promiscuous relationship. Hum Mol Genet. 2005;14(21):3203–17. https://doi.org/10.1093/hmg/ddi351

25. Peng J, Alam S, Radhakrishnan K, Mariappan M, Rudolph MG, May C, et al. Eukaryotic formylglycine-generating enzyme catalyses a monooxygenase type of reaction. FEBS J. 2015;282(17):3262–74. https://doi.org/10.1111/febs.13347

26. Timonova SS, Pavelko VI, Kirik IA, Bade VN, Malygina TO, Khamitov RA, Piskunov AA. Principle of express selection of leading producing clones of monoclonal antibodies in the development of stable CHO-based cell lines. Biotekhnologiya = Biotechnology. 2019;35(4);65–72 (In Russ.) https://doi.org/10.21519/0234-2758-2019-35-4-65-72

27. Muralidharan-Chari V, Wurz Z, Doyle F, Henry M, Diendorfer A, Tenenbaum SA, et al. PTSelect™: a post-transcriptional technology that enables rapid establishment of stable CHO cell lines and surveillance of clonal variation. J Biotechnol. 2021;325:360– 71. https://doi.org/10.1016/j.jbiotec.2020.09.025

28. Steger K, Brady J, Wang W, Duskin M, Donato K, Peshwa M. CHO-S antibody titers >1 gram/liter using flow electroporation-mediated transient gene expression followed by rapid migration to high-yield stable cell lines. J Biomol Screen. 2015;20(4):545–51. https://doi.org/10.1177/1087057114563494

29. Brown AJ, Gibson S, Hatton D, James DC. Transcriptome-based identification of the optimal reference CHO genes for normalisation of qPCR data. Biotechnol J. 2018;13(1). https://doi.org/10.1002/biot.201700259

30. Chopra A, Willmore WG, Biggar KK. Protein quantification and visualization via ultraviolet-dependent labeling with 2,2,2-trichloroethanol. Sci Rep. 2019;9(1):13923. https://doi.org/10.1038/s41598-019-50385-9


Review

For citations:


Timonova S.S., Smolova K.A., Zaripova D.T., Pantyushenko M.S., Koroleva M.A., Anisimov R.L., Khamitov R.A., Piskunov A.A., Bade V.N. Increasing productivity of arylsulfatase B-producing cell line by coexpression of formylglycine-generating enzyme. Biological Products. Prevention, Diagnosis, Treatment. 2022;22(1):80-93. (In Russ.) https://doi.org/10.30895/2221-996X-2022-22-1-80-93

Views: 755


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2221-996X (Print)
ISSN 2619-1156 (Online)