Preview

Biological Products. Prevention, Diagnosis, Treatment

Advanced search

Challenges in development and authorisation of gene therapy products

https://doi.org/10.30895/2221-996X-2022-22-1-6-22

Abstract

There are a lot of diseases known today, which are caused by genetic abnormalities. Advances in genetics and biotechnology brought about gene editing technologies that can produce almost any gene, which ultimately led to the emergence of a new class of medicines - gene therapy products (GTPs). The aim of the study was to analyse international experience in development and authorisation of GTPs. The review highlights the challenges in GTP development, related to the search for an optimal approach to therapeutic gene delivery to the target cells. Viral vectors were shown to be a promising gene delivery system, with adenovirus (AV) and adeno-associated virus (AAV) based products demonstrating the highest efficacy and safety. The paper reviews current approaches to gene editing that allow modification of AVs and AAVs to improve GTP efficacy and safety. These modifications are carried out with the aim of, e.g., including a large therapeutic gene into a viral vector, decreasing viral protein expression levels, and decreasing viral vector immunogenicity. The review summarises GTP authorisation procedures in the USA and the European Union, including data on FDA and EMA subcommittees and departments entrusted with advisory functions. The paper mentions that there is one Russian-produced GTP authorised in the Russian Federation, and some other GTPs are in the pipeline. Therefore, the Russian regulatory framework and the Eurasian regulations and recommendations should be updated in order to accommodate for GTP development and authorisation.

About the Authors

A. A. Soldatov
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Aleksandr A. Soldatov, Dr. Sci. (Med.)

8/2 Petrovsky Blvd, Moscow 127051



Zh. I. Avdeeva
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Zhanna I. Avdeeva, Dr. Sci. (Med.), Professor

8/2 Petrovsky Blvd, Moscow 127051



D. V. Gorenkov
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Dmitry V. Gorenkov

8/2 Petrovsky Blvd, Moscow 127051



L. M. Khantimirova
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

 Leysan M. Khantimirova, Cand. Sci. (Biol.)

8/2 Petrovsky Blvd, Moscow 127051



S. G. Guseva
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Svetlana G. Guseva

8/2 Petrovsky Blvd, Moscow 127051



V. A. Merkulov
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Vadim A. Merkulov, Dr. Sci. (Med.), Professor

8/2 Petrovsky Blvd, Moscow 127051



References

1. Soldatov AA, Avdeeva ZhI, Medunitsyn NV, Kryuchkov NA. Mechanisms of development of the undesirable immune response at use of biotechnological medicines. Immunologiya = Immunology. 2017;38(5):271–83 (In Russ.) https://doi.org/10.18821/0206-4952-2017-38-5-271-283

2. Wirth T, Parker N, Ylä-Herttuala S. History of gene therapy. Gene. 2013;525:162–9. https://doi.org/10.1016/j.gene.2013.03.137

3. Cartier-Lacave N, Ali R, Yla-Herttuala S, Kato K, Baetschi B, Lovell-Badge R, et al. Debate on germline gene editing. Hum Gene Ther Methods. 2016;27(4):135–42. https://doi.org/10.1089/hgtb.2016.28999.deb

4. McCarthy M. Scientists call for moratorium on clinical use of human germline editing. BMJ. 2015;351:h6603. https://doi.org/10.1136/bmj.h6603

5. Morrow T. Novartis’s Kymriah: harnessing immune system comes with worry about reining in costs. Manag Care. 2017;26(10):28–30.

6. Yano K, Watanabe N, Tsuyuki K, Ikawa T, Kasanuki H, Yamato M. Regulatory approval for autologous human cells and tissue products in the United States, the European Union, and Japan. Regen Ther. 2015;1:45–56. https://doi.org/10.1016/j.reth.2014.10.001

7. Deev R, Plaksa I, Bozo I, Mzhavanadze N, Suchkov I, Chervyakov Y, et al. Results of 5-year follow-up study in patients with peripheral artery disease treated with PL-VEGF165 for intermittent claudication. Ther Adv Cardiovasc Dis. 2018;12(9):237–46. https://doi.org/10.1177/1753944718786926

8. Wade N. UCLA gene therapy racked by friendly fire. Science. 1980;210(4469):509–11. https://doi.org/10.1126/science.6932738

9. Rosenberg SA, Aebersold P, Cornetta K, Kasid A, Morgan RA, Moen R, et al. Gene transfer into humans—immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med. 1990:323:570–8. https://doi.org/10.1056/NEJM199008303230904

10. Gaspar HB, Cooray S, Gilmour KC, Parsley KL, Zhang F, Adams S, et al. Hematopoietic stem cell gene therapy for adenosine deaminase — deficient severe combined immunodeficiency leads to longterm immunological recovery and metabolic correction. Sci Transl Med. 2011;3(97):97ra80. https://doi.org/10.1126/scitranslmed.3002716

11. Vile RG, Russell SJ, Lemoine NR. Cancer gene therapy: hard lessons and new courses. Gene Ther. 2000;7:2–8. https://doi.org/10.1038/sj.gt.3301084

12. Wang B, Li J, Xiao X. Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc Natl Acad Sci USA. 2000;97(25):13714–9. https://doi.org/10.1073/pnas.240335297

13. Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, Gao GP, et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab. 2003;80:148–58. https://doi.org/10.1016/j.ymgme.2003.08.016

14. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003;302(5644):415–9. https://doi.org/10.1126/science.1088547

15. Nam CH, Rabbitts TH. The role of LM02 in development and in T cell leukemia after chromosomal translocation or retroviral insertion. Mol Ther. 2006;13(1):15–25. https://doi.org/10.1016/j.ymthe.2005.09.010

16. Lawler SE, Speranza MC, Cho CF, Chiocca EA. Oncolytic viruses in cancer treatment: a review. JAMA Oncol. 2017;3(6):841–9. https://doi.org/10.1001/ja-maoncol.2016.2064

17. Giacca M, Zacchigna S. Virus-mediated gene delivery for human gene therapy. J Control Release. 2012;161(2):377–88. https://doi.org/10.1016/j.jcon-rel.2012.04.008

18. Chattopadhyay S, Sen GC. dsRNA-activation of TLR3 and RLR signaling: gene induction-dependent and independent effects. J Interferon Cytokine Res. 2014;34(6):427–36.https://doi.org/10.1089/jir.2014.0034

19. Herrero MJ, Sabater L, Guenechea G, Sendra L, Montilla AI, Abargues R, et al. DNA delivery to ’ex vivo’ human liver segments. Gene Ther. 2012;19:504–12.https://doi.org/10.1038/gt.2011.144

20. Wold WS, Toth K. Adenovirus vectors for gene therapy, vaccination and cancer gene therapy. Curr Gene Ther. 2013;13(6):421–33 https://doi.org/10.2174/1566523213666131125095046

21. Majhen D, Ambriović-Ristov A. Adenoviral vectors– how to use them in cancer gene therapy? Virus Res. 2006;119(2):121–33. https://doi.org/10.1016/j.virus-res.2006.02.001

22. Wen S, Schneider DB, Driscoll RM, Vassalli G, Sassani AB, Dichek DA. Second-generation adenoviral vectors do not prevent rapid loss of transgene expression and vector DNA from the arterial wall. Arterioscler Thromb Vasc Biol. 2000;20:1452–8. https://doi.org/10.1161/01.atv.20.6.1452

23. Sakhuja K, Reddy PS, Ganesh S, Cantaniag F, Pattison S, Limbach P, et al. Optimization of the generation and propagation of gutless adenoviral vectors. Hum Gene Ther. 2003;14(3):243–54. https://doi.org/10.1089/10430340360535797

24. Alba R, Bosch A, Chillon M. Gutless adenovirus: last-generation adenovirus for gene therapy. Gene Ther. 2005;12:S18–27. https://doi.org/10.1038/sj.gt.3302612

25. Fausther-Bovendo H, Kobinger GP. Pre-existing immunity against Ad vectors: humoral, cellular, and innate response, what’s important? Hum Vaccin Immunother. 2014;10(10):2875–84. https://doi.org/10.4161/hv.29594

26. Wang X, Xing M, Zhang C, Yang Y, Chi Y, Tang X, et al. Neutralizing antibody responses to enterovirus and adenovirus in healthy adults in China. Emerg Microbes Infect. 2014;3(5):e30. https://doi.org/10.1038/emi.2014.30

27. Atkinson RL, Dhurandhar NV, Allison DB, Bowen RL, Israel BA, Albu JB, Augustus AS. Human adenovirus-36 is associated with increased body weight and paradoxical reduction of serum lipids. Int J Obes (Lond). 2005;29:281–6. https://doi.org/10.1038/sj.ijo.0802830

28. Trinh HV, Lesage G, Chennamparampil V, Vollenweider B, Burckhardt CJ, Schauer S, et al. Avidity binding of human adenovirus serotypes 3 and 7 to the membrane cofactor CD46 triggers infection. J Virol. 2012;86(2):1623–37. https://doi.org/10.1128/jvi.06181-11

29. Cho YS, Do MH, Kwon SY, Moon C, Kim K, Lee K, et al. Efficacy of CD46-targeting chimeric Ad5/35 adenoviral gene therapy for colorectal cancers. Oncotarget. 2016;7:38210–23. https://doi.org/10.18632/oncotar-get.9427

30. Li X, Mao Q, Wang D, Xia H. A novel Ad5/11 chimeric oncolytic adenovirus for improved glioma therapy. Int J Oncol. 2012;41:2159–65. https://doi.org/10.3892/ijo.2012.1674

31. Tapia MD, Sow SO, Lyke KE, Haidara FC, Diallo F, Doumbia M, et al. Use of ChAd3-EBO-Z Ebola virus vaccine in Malian and US adults, and boosting of Malian adults with MVA-BN-Filo: a phase 1, single-blind, randomised trial, a phase 1b, open-label and double-blind, dose-escalation trial, and a nested, randomised, double-blind, placebo-controlled trial. Lancet Infect Dis. 2016;16(1):31–42. https://doi.org/10.1016/s1473-3099(15)00362-x

32. Irons EE, Flatt JW, Doronin K, Fox TL, Acchione M, Stewart PL, Shayakhmetov DM. Coagulation factor binding orientation and dimerization may influence infectivity of adenovirus-coagulation factor complexes. J Virol. 2013;87(17):9610–9. https://doi.org/10.1128/JVI.01070-13

33. Ledgerwood JE, DeZure AD, Stanley DA, Coates EE, Novik L, Enama ME, et al. Chimpanzee adenovirus vector Ebola vaccine. N Engl J Med. 2017;376:928–38. https://doi.org/10.1056/NEJMoa1410863

34. Miura Y, Yamasaki S, Davydova J, Brown E, Aoki K, Vickers S, Yamamoto M. Infectivity-selective oncolytic adenovirus developed by high-throughput screening of adenovirus-formatted library. Mol Ther. 2013;21(1):139–48. https://doi.org/10.1038/mt.2012.205

35. Yamamoto Y, Nagasato M, Rin Y, Henmi M, Ino Y, Yachida S, et al. Strong antitumor efficacy of a pancreatic tumor-targeting oncolytic adenovirus for neuroendocrine tumors. Cancer Med. 2017;6(10):2385–97. https://doi.org/10.1002/cam4.1185

36. Hausl MA, Zhang W, Müther N, Rauschhuber C, Franck HG, Merricks EP, et al. Hyperactive sleeping beauty transposase enables persistent phenotypic correction in mice and a canine model for hemophilia B. Mol Ther. 2010;18(11):1896–906. https://doi.org/10.1038/mt.2010.169

37. Castello R, Borzone R, D’Aria S, Annunziata P, Piccolo P, Brunetti-Pierri N. Helper-dependent adenoviral vectors for liver-directed gene therapy of primary hyperoxaluria type 1. Gene Ther. 2016;23:129–34. https://doi.org/10.1038/gt.2015.107

38. Rosewell Shaw A, Suzuki M. Recent advances in oncolytic adenovirus therapies for cancer. Curr Opin Virol. 2016;21:9–15. https://doi.org/10.1016/j.covi-ro.2016.06.009

39. Samulski RJ, Muzyczka N. AAV-mediated gene therapy for research and therapeutic purposes. Annu Rev Virol. 2014;1(1):427–51. https://doi.org/10.1146/an-nurev-virology-031413-085355

40. Carter BJ. Adeno-associated virus and the development of adenoassociated virus vectors: a historical perspective. Mol Ther. 2004;10:981–9. https://doi.org/10.1016/j.ymthe.2004.09.011

41. Grieger JC, Samulski RJ. Adeno-associated virus vectorology, manufacturing, and clinical applications. Methods Enzymol. 2012;507:229–54. https://doi.org/10.1016/B978-0-12-386509-0.00012-0

42. Buchlis G, Podsakoff GM, Radu A, Hawk SM, Flake AW, Mingozzi F, High KA. Factor IX expression in skeletal muscle of a severe hemophilia B patient 10 years after AAV-mediated gene transfer. Blood. 2012;119(13):3038–41. https://doi.org/10.1182/blood-2011-09-382317

43. Strobel B, Duechs MJ, Schmid R, Stierstorfer BE, Bucher H, Quast K, et al. Modeling pulmonary disease pathways using recombinant adeno-associated virus 6.2. Am J Respir Cell Mol Biol. 2015;53(3):291–302. https://doi.org/10.1165/rcmb.2014-0338MA

44. Nathwani AC, Nienhuis AW, Davidoff AM. Our journey to successful gene therapy for hemophilia B. Hum Gene Ther. 2014;25(11):923–6. https://doi.org/10.1089/hum.2014.2540

45. Smith LJ, Ul-Hasan T, Carvaines SK, Van Vliet K, Yang E, Wong KK Jr, et al. Gene transfer properties and structural modeling of human stemcell-derived AAV. Mol Ther. 2014;22(9):1625–34. https://doi.org/10.1038/mt.2014.107

46. Murphy SL, Li H, Zhou S, Schlachterman A, High KA. Prolonged susceptibility to antibody-mediated neutralization for adenoassociated vectors targeted to the liver. Mol Ther. 2008;16(1):138–45. https://doi.org/10.1038/sj.mt.6300334

47. Calcedo R, Vandenberghe LH, Gao G, Lin J, Wilson JM. Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses. J Infect Dis. 2009;199(3):381–90. https://doi.org/10.1086/595830

48. Mingozzi F, High KA. Immune responses to AAV-in clinical trials. Curr Gene Ther. 2011;11(4):321–30. https://doi.org/10.2174/156652311796150354

49. Nathwani AC, Tuddenham EG, Rangarajan S, Rosales C, McIntosh J, Linch DC, et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med. 2011;365:2357–65. https://doi.org/10.1056/NEJMoa1108046

50. Greenberg B, Butler J, Felker GM, Ponikowski P, Voors AA, Pogoda JM, et al. Prevalence of AAV1 neutralizing antibodies and consequences for a clinical trial of gene transfer for advanced heart failure. Gene Ther. 2016;23(3):313–9. https://doi.org/10.1038/gt.2015.109

51. Zinn E, Pacouret S, Khaychuk V, Turunen HT, Carvalho LS, Andres-Mateos E, et al. In silico reconstruction of the viral evolutionary lineage yields a potent gene therapy vector. Cell Rep. 2015;12(6):1056–68. https://doi.org/10.1016/j.celrep.2015.07.019

52. Bowles DE, McPhee SW, Li C, Gray SJ, Samulski JJ, Camp AS, et al. Phase 1 gene therapy for Duchenne muscular dystrophy using a translational optimized AAV-vector. Mol Ther. 2012;20(2):443–55. https://doi.org/10.1038/mt.2011.237

53. Faust SM, Bell P, Cutler BJ, Ashley SN, Zhu Y, Rabinowitz JE, Wilson JM. CpG-depleted adeno-associated virus vectors evade immune detection. J Clin Invest. 2013;123(7):2994–3001. https://doi.org/10.1172/jci68205

54. Mays LE, Vandenberghe LH, Xiao R, Bell P, Nam HJ, Agbandje-McKenna M, Wilson JM. Adeno-associated virus capsid structure drives CD4-dependent CD8+ T cell response to vector encoded proteins. J Immunol. 2009;182(10):6051–60. https://doi.org/10.4049/jimmunol.0803965

55. Chandler RJ, Sands MS, Venditti CP. Recombinant adeno-associated viral integration and genotoxicity: insights from animal models. Hum Gene Ther. 2017;28(4):314–22. https://doi.org/10.1089/hum.2017.009

56. Brandon EF, Hermsen HP, van Eijkeren JC, Tiesjema B. Effect of administration route on the biodistribution and shedding of replication-deficient AAV2: a qualitative modelling approach. Curr Gene Ther. 2010;10(2):91–106. https://doi.org/10.2174/156652310791111047

57. Grieger JC, Samulski RJ. Adeno-associated virus vectorology, manufacturing, and clinical applications. Methods Enzymol. 2012;507:229–54. https://doi.org/10.1016/B978-0-12-386509-0.00012-0

58. Wright JF. Manufacturing and characterizing AAVbased vectors for use in clinical studies. Gene Ther. 2008;15(11):840–8. https://doi.org/10.1038/gt.2008.65

59. Ertl HCJ, High KA. Impact of AAV-capsid-specific T-cell responses on design and outcome of clinical gene transfer trials with recombinant adenoassociated viral vectors: an evolving controversy. Hum Gene Ther. 2017;28(4):328–37. https://doi.org/10.1089/hum.2016.172

60. Zhang WW, Li L, Li D, Liu J, Li X, Li W, et al. The first approved gene therapy product for cancer Adp53 (Gendicine): 12 years in the clinic. Hum Gene Ther. 2018;29(2):160–79. https://doi.org/10.1089/hum.2017.218

61. Sheridan C. Gene therapy finds its niche. Nat Biotechnol. 2011;29:121–8. https://doi.org/10.1038/nbt.1769

62. Kim S, Federman N, Gordon EM, Hall FL, Chawla SP. Rexin-G®, a tumor-targeted retrovector for malignant peripheral nerve sheath tumor: a case report. Mol Clin Oncol. 2017;6:861–5. https://doi.org/10.3892/mco.2017.1231

63. Wang D, Zhong L, Nahid MA, Gao G. The potential of adeno-associated viral vectors for gene delivery to muscle tissue. Expert Opin Drug Deliv. 2014;11(3):345–64. https://doi.org/10.1517/17425247.2014.871258

64. MacLaren RE, Groppe M, Barnard AR, Cottriall CL, Tolmachova T, Seymour L, et al. Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet. 2014;383(9923):1129–37. https://doi.org/10.1016/S0140-6736(13)62117-0

65. Breitbach CJ, Lichty BD, Bell JC. Oncolytic viruses: therapeutics with an identity crisis. EBioMedicine. 2016;9:31–6. https://doi.org/10.1016/j.ebi-om.2016.06.046

66. Hocquemiller M, Giersch L, Audrain M, Parker S, Cartier N. Adeno-associated virus-based gene therapy for CNS diseases. Hum Gene Ther. 2016;27(7):478– 96. https://doi.org/10.1089/hum.2016.087

67. Nathwani AC, Reiss UM, Tuddenham EG, Rosales C, Chowdary P, McIntosh J, et al. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N Engl J Med. 2014;371:1994–2004. https://doi.org/10.1056/NEJMoa1407309

68. Roossinck MJ, Bazán ER. Symbiosis: viruses as intimate partners. Annu Rev Virol. 2017;4:123–39. https://doi.org/10.1146/annurev-virology-110615-042323

69. Carvalho M, Martins AP, Sepodes B. Hurdles in gene therapy regulatory approval: a retrospective analysis of European Marketing Authorization Applications. Drug Discovery Today. 2019;24(3):823–8. https://doi.org/10.1016/j.drudis.2018.12.007

70. Dabisch I, Dethling J, Dintsios CM, Drechsler M, Kalanovic D, Kaskel P, et al. Patient relevant endpoints in oncology: current issues in the context of early benefit assessment in Germany. Health Econ. Rev. 2014;4(1):2. https://doi.org/10.1186/2191-1991-4-2


Supplementary files

Review

For citations:


Soldatov A.A., Avdeeva Zh.I., Gorenkov D.V., Khantimirova L.M., Guseva S.G., Merkulov V.A. Challenges in development and authorisation of gene therapy products. Biological Products. Prevention, Diagnosis, Treatment. 2022;22(1):6-22. (In Russ.) https://doi.org/10.30895/2221-996X-2022-22-1-6-22

Views: 1075


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2221-996X (Print)
ISSN 2619-1156 (Online)