Preview

БИОпрепараты. Профилактика, диагностика, лечение

Расширенный поиск

Определение остаточной ДНК клеток-продуцентов E. coli и CHO в субстанциях рекомбинантых белков методом qPCR

Полный текст:

Аннотация

Рынок препаратов рекомбинантых белков растет и развивается во всем мире, в том числе и в России. Как продуцент, так и субстанция, должны быть тщательно охарактеризованы и проверены по всем критериям безопасности. Среди обязательных требований, предъявляемых к таким препаратам - содержание остаточной ДНК клеток-продуцентов должно быть не более 10 нг на дозу. Коммерческих наборов для определения остаточной ДНК в мире относительно немного, они основаны на четырех разных методах. В статье представлен краткий обзор этих методов, обозначены их преимущества и недостатки. Общим недостатком всех коммерческих наборов является стоимость. Основными задачами работы было подобрать оптимальный метод выделения ДНК из белковых субстанций и образцов различных этапов очистки белка, отработать определение количества остаточной ДНК Escherichia coli и клеток яичника китайского хомяка (CHO) методом количественной полимеразной цепной реакции (qPCR) без использования коммерческих наборов. Статья также содержит ряд практических рекомендаций по особенностям выделения ДНК и хранению стандарта. Целью исследования был поиск достоверного и недорогого метода определения содержания остаточной ДНК клеток-продуцентов в образцах рекомбинантых белков. В статье приводится обзор методов выделения ДНК для анализа, обоснована необходимость выделения ДНК перед анализом, преимущество отдано методу выделения на спин-колонках. Оптимальный метод выделения ДНК для определения ее количества в субстанции такой, при котором выход ДНК стабилен, в том числе и при различных химических составах исследуемых образцов, а в растворе выделенной ДНК отсутствует белок и другие примеси. Предложенный метод выделения ДНК на спин-колонках является наименее трудозатратным, оптимизирован для выделения ДНК из белковых субстанций и образцов различных стадий очистки белков. Самостоятельное приготовление растворов для выделения ДНК является простой процедурой и может снизить затраты на анализ. Представлен отчет об успешной адаптации методик определения остаточной ДНК E. coli и CHO методом qPCR с использованием флуоресцентных зондов. Продемонстрирована чувствительность метода не менее 1 пг/мл как при анализе количества остаточной ДНК E. coli, так и CHO.

Об авторе

Н. Д. Ёлшин
Государственный НИИ особо чистых биопрепаратов
Россия
Младший научный сотрудник лаборатории иммунофармакологии


Список литературы

1. Andersen DC, Krummen L. Recombinant protein expression for therapeutic applications. Curr Opin Biotechnol. 2002; 13: 117-23.

2. Миронов АН, Меркулов ВА, Сакаева ИВ, Васильев АН, Бунятян НД, Кукес ВГ. и др. Оценка качества биологических лекарственных препаратов, полученных с использованием методов рекомбинантной ДНК. В кн.: Руководство по экспертизе лекарственных средств. Т. 3. М.: ПОЛИГРАФ-ПЛЮС; 2014. С. 4-24.

3. Note for Guidance on Production and Quality Control of Medicinal Products Derived by Recombinant DNA Technology, 3AB1A. Production and Quality Control of Medicinal Products derived by recombinant DNA Technology. 1995. P. 214.

4. WHO. WHO Expert Committee on Biological standardization: Highlights of the 46th meeting, October 1996. WHO Wkly Epidemiol. Rec. 72, 1997, pp. 141-5.

5. Lahijani M, Duhon M, Lusby E, Betita H, Marquet M. Quantitation of host cell DNA contaminate in pharmaceutical-grade plasmid DNA using competitive PCR and enzyme linked immunosorbent assay. Hum Gene Ther. 1988; (9): 1173-80.

6. Wang X, Morgan DM, Wang G, Mozier NM. Residual DNA Analysis in Biologics Development: Review of Measurement and Quantitation Technologies and Future Directions. Biotechnology&Bioengeneering. Published online 28 September 2011 in Wiley Online Library (wileyonlinelibrary.com). doi 10.1002/bit.23343.

7. Points to consider in the manufacture and testing of monoclonal antibody products for human use. US Department of Health and Human Services, Food and Drug Administration, Center for Biologics Evaluation and Research, U. S. A. FDA; 1997.

8. Position statement on the use of tumourigenic cells of human origin for the production of biological and biotechnological medicinal products. Biotechnology Working Party, Committee for Proprietary Medicinal Product, The European Agency for the Evaluation of Medicinal Products: Evaluation of Medicinal Products for Human Use, EU. CPMP; 2001.

9. Лекарственные средства, получаемые методами рекомбинантных ДНК. ОФС 1.7.1.0007.15. Государственная фармакопея Российской Федерации. 13-е изд. Т. 2. С. 536-7. M.; 2015. Available from: http://femb.ru/feml.

10. WHO Expert Committee on Biological Standardization, World Health Organ. Teth. Rep. Ser. 1998; 878: 1-101.

11. Lee DH, Bae JE, Lee JH, Shin JS, Kim IS. Quantitative detection of residual E. coli host cell DNA by real-time PCR. J Microbiol Biotechnol. 2010; 20(10): 1463-70.

12. Kung VT, Panfili PR, Sheldon EL, King RS, Nagainis PA, Gomez JB, et al. Picogram quantitation of total DNA using DNA-binding proteins in a silicon sensor-based system. Anal Biochem. 1990; 187: 220-7.

13. Vaneechoutte M, Van Eldere J. The possibilities and limitations of nucleic acid amplification technology in diagnostic microbiology. J Med Microbiol. 1997; 46: 188-94.

14. Abu Al-Soud W, Jönsson LJ, Rådström P. Identification and characterization of immunoglobulin G in blood as a major inhibitor of diagnostic PCR. J Clin Microbiol. 2000; 38: 345-50.

15. Abu Al-Soud W, Rådström P. Purification and Characterization of PCR-Inhibitory Components in Blood Cells. J Clin Microbiol. 2001; 39(2): 485-93.

16. Peper G, Fankhauser A, Merlin T, Roscic A, Hofmann M, Obrdlik P. Direct real-time quantitative PCR for measurement of host-cell residual DNA in therapeutic proteins. J Pharm Biomed Anal 2014; 100: 123-30.

17. Goldenberger D, Perschil I, Ritzler M, Altwegg M. A simple «universal» DNA extraction procedure using SDS and proteinase K is compatible with direct PCR amplification. PCR Methods Appl. 1995; (4): 368-70.

18. Hussain M. A direct qPCR method for residual DNA quantification in monoclonal antibody drugs produced in CHO cells. J Pharm Biomed Anal. 2015; 115: 603-6.

19. Hu B, Sellers J, Kupeca J, Ngob W, Fentona S, Yanga TY, Grebaniera A. Optimization and validation of DNA extraction and real-time PCR assay for the quantitative measurement of residual host cell DNA in biopharmaceutical products. J Pharm Biomed Anal. 2014; 88: 92-5.

20. Vogelstein B, Gillespie D. Preparative and analytical purification of DNA from agarose. Proc Natl Acad Sci. USA 1979; 76: 615-9.

21. Zhang W, Wu M, Menesale E, Lu T, Magliola A, Bergelson S. Development and qualification of a high sensitivity, high throughput Q-PCR assay for quantitation of residual host cell DNA in purification process intermediate and drug substance samples. J Pharm Biomed Anal. 2014; 100: 145-9.

22. Venable D, Miro-Quesada G, Calley J, Monson E, He L. High-throughput and quantitative detection of residual NS0 and CHO host cell genomic DNA. BioProcess Int. 2007; (5): 56-61.

23. Boom R, Sol CJ, Salimans MM, Jansen CL, Wertheim-van Dillen PM, et al. Rapid and simple method for purification of nucleic acids. J Clin Microbiol 1990; (3): 495-503.

24. Siddappa NB, Avinash A, Venkatramanan M, Ranga U. Regeneration of commercial nucleic acid extraction columns without the risk of carryover contamination. BioTechniques 2007; 42: 186-92.

25. Röder B, Frühwirth K, Vogl C, Wagner M, Rossmanith P. Impact of long-term storage on stability of standard DNA for nucleic acid-based methods. J Clin Microbiol. 2010; 48(11): 4260-2.

26. Glasel JA. Validity of nucleic acid purities monitored by 260 nm/280 nm absorbance ratios. BioTechniques 1995; 18: 62-6.

27. Podivinsky E, Love JL, van der Colff L, Samuel L. Effect of storage regime on the stability of DNA used as a calibration standard for real-time polymerase chain reaction. Anal Biochem. 2009; 394(1): 132-4.

28. Smith S, Morin P. Optimal storage conditions for highly dilute DNA samples: a role for trehalose as a preserving agent. J Forensic Sci. 2006; 51(2): 426-32.

29. Haynes SR, Toomey TP, Leinwand L, Jelinek WR. The Chinese hamster Alu-equivalent sequence: a conserved highly repetitious, interspersed deoxyribonucleic acid sequence in mammals has a structure suggestive of a transposable element. Molecular Cellular Biology 1981; 1(7): 573-83.

30. Verardo ML, Carvalho JG, Delgado DN, Kuhns ST. Accuracy and sensitivity of residual DNA detection by qPCR is not predicted by target copy number. Biotechnology Progress 2012; 28(2): 428-34.

31. Brosius J, Dull TJ, Sleeter DD, Noller HF. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Bacteriol. 1981; 62: 293-300.

32. Farivar TN, Mamnoon B, Arzenani MK, Ilghari D. Novel real time polymerase chain reaction approach for rapid detection of the residual Escherichia coli genomic DNA in biopharmaceutical products establishment of real time polymerase chain reaction to detect residual gDNA. Biotech Health Sci. 2014; 3(1): 263-75.

33. Silkie SS, Tolcher MP, Nelson KL. Reagent decontamination to eliminate false-positives in Escherichia coli qPCR. J Microbiol Meth. 2008; 72: 275-82.

34. Kibbee R, Linklater N, Örmeci B. Eliminating false positives in a qPCR assay for the detection of the uidA gene in Escherichia coli. J Water Health 2013; 11(3): 382-6.


Для цитирования:


Ёлшин Н.Д. Определение остаточной ДНК клеток-продуцентов E. coli и CHO в субстанциях рекомбинантых белков методом qPCR. БИОпрепараты. Профилактика, диагностика, лечение. 2016;16(4):245-252.

For citation:


Yolshin N.D. Detection of residual E. coli and CHOhost-cellDNA in recombinant proteins by qPCR. BIOpreparations. Prevention, Diagnosis, Treatment. 2016;16(4):245-252. (In Russ.)

Просмотров: 163


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2221-996X (Print)
ISSN 2619-1156 (Online)