Excipients in biological medicinal products: Functional classification, stability issues, and analytical quantitation approaches
https://doi.org/10.30895/2221-996X-2025-25-3-307-320
Abstract
INTRODUCTION. When developing and evaluating new biological products (BP), potential adverse action and complicated analytical procedure are a specific issue. Innovative analytical methods and selection of excipients allow for risk minimisation and enhanced quality control of biological products.
AIM. This study aimed to analyse modern quantitative approaches to BP excipients and assess their prospects in improving laboratory expertise during authorisation and quality compliance testing of a biological product that has been launched into the commercial market.
DISCUSSION. The literature search was performed using SciFinder, PubMed, and eLIBRARY.RU databases. The authors showed data on functional classification of the excipients. Potential adverse effects were analysed, including sucrose nephropathy when using intravenous immunoglobulin preparations containing sucrose; hypoglycaemia; changes in amino acid metabolism; decreased DNA and RNA synthesis, and inhibition of platelet function caused by elevated sodium caprylate in albumin preparations. Analysed methods are based on excipient degradation. Possible solutions have been described (reduction or replacement with another excipient, such as sodium caprylate excluded from the BPs of many manufacturers). Innovative search approaches were used for new adjuvants (MF59, АS01, АS03, AS04, and RC-529) combining immune response inducers and delivery systems. The described mathematical model was used to select excipient composition. The authors analysed literature covering analytical methods for excipient quantitation, including liquid and gas-liquid chromatography and spectrophotometric quantitation methods of the most significant excipients in BPs (amino acids, polysorbates, phenol, phenoxyethanol, benzyl alcohol, and sodium caprylate). Prospects of different analytical techniques were considered (size-exclusion HPLC for evaluation of polysorbate 80, HILIC HPLC for selective quantitation of amino acid components, hydrophilic HPLC with refractometric detection and ion-exchange HPLC with amperometric detection for selective quantitation of carbohydrate stabilisers (sorbitol, mannitol, trehalose, glucose, lactose, sucrose, maltose), as well as gas-liquid chromatography for 2-phenoxyethanol and m-cresol.
CONCLUSIONS. Selecting BP excipients is a complex task that requires a control strategy not only for established concentrations, but also for products of possible degradation. Developing unified analytical methods for excipient quantitation is a priority for quality assurance of BPs authorised and launched into the commercial market.
Keywords
About the Authors
A. S. MineroRussian Federation
Anastasia S. Minero
8/2 Petrovsky Blvd, Moscow 127051
O. B. Rounova
Russian Federation
Olga B. Rounova, Cand. Sci. (Chem.)
8/2 Petrovsky Blvd, Moscow 127051
I. M. Shcherbachenko
Russian Federation
Irina M. Shcherbachenko, Cand. Sci. (Biol.)
8/2 Petrovsky Blvd, Moscow 127051
O. B. Ustinnikova
Russian Federation
Olga B. Ustinnikova, Cand. Sci. (Biol.)
8/2 Petrovsky Blvd, Moscow 127051
References
1. Abrantes CG, Duarte D, Reis CP. An overview of pharmaceutical excipients: Safe or not safe? J Pharm Sci. 2016;105(7):2019–26. https://doi.org/10.1016/j.xphs.2016.03.019
2. Makkad S, Sheikh M, Shende S, Jirvankar P. Pharmaceutical excipients: Functions, selection criteria, and emerging trends. Int J Pharm Investig. 2025;15(2):361–76. https://doi.org/10.5530/ijpi.20251676
3. Tentsova AI, Tereshkina OI, Rudakova IP, Samylina IA, Guskova TA, et al. Current biopharmaceutical aspects of excipients. Pharmacy. 2012;(7):3–6 (In Russ.). EDN: PEWXKP
4. Jena S, Krishna Kumar NS, Aksan A, Suryanarayanan R. Stability of lyophilized albumin formulations: Role of excipient crystallinity and molecular mobility. Int J Pharm. 2019;569:118568. https://doi.org/10.1016/j.ijpharm.2019.118568
5. Thakral S, Sonje J, Munjal B, et al. Mannitol as an excipient for lyophilized injectable formulations. J Pharm Sci. 2023;112(1):19–35. https://doi.org/10.1016/j.xphs.2022.08.029
6. Arakawa T, Tsumoto K, Kita Y, et al. Biotechnology applications of amino acids in protein purification and formulations. Amino Acids. 2007;33(4):587–605. https://doi.org/10.1007/s00726-007-0506-3
7. Stärtzel P. Arginine as an excipient for protein freeze — Drying: A mini review. J Pharm Sci. 2018;107(4):960–7. https://doi.org/10.1016/j.xphs.2017.11.015
8. Hackl E, Darkwah J, Smith G, Ermolina I. Effect of arginine on the aggregation of protein in freeze-dried formulations containing sugars and polyol: II. BSA reconstitution and aggregation. AAPS PharmSciTech. 2018;19(7):2934–47. https://doi.org/10.1208/s12249-018-1114-0
9. Ionova Y, Wilson L. Biologic excipients: Importance of clinical awareness of inactive ingredients. PLoS One. 2020;15(6):e0235076. https://doi.org/10.1371/journal.pone.0235076
10. Rao VA, Kim JJ, Patel DS, et al. A comprehensive scientific survey of excipients used in currently marketed, therapeutic biological drug products. Pharm Res. 2020;37(10):200. https://doi.org/10.1007/s11095-020-02919-4
11. Megarry A, Taylor A, Gholami A, et al. Twin-screw granulation and high-shear granulation: The influence of mannitol grade on granule and tablet properties. Int J Pharm. 2020;590:119890. https://doi.org/10.1016/j.ijpharm.2020.119890
12. Liu J, Klinzing GR, Nie H. Efect of material properties and variability of mannitol on tablet formulation development. Pharm Res. 2023;40(8):2071–85. https://doi.org/10.1007/s11095-023-03577-y
13. Chapman SA, Gilkerson KL, Davin TD, Pritzker MR. Acute renal failure and intravenous immune globulin: occurs with sucrose-stabilized, but not with D-sorbitol-stabilized, formulation. Ann Pharmacother. 2004;38(12):2059–67. https://doi.org/10.1345/aph.1E040
14. Zhang R, Szerlip HM. Reemergence of sucrose nephropathy: acute renal failure caused by high-dose intravenous immune globulin therapy. South Med J. 2000;93(9):901–4.
15. Kulkarni SS, Suryanarayanan R, Rinella JV Jr, Bogner RH. Mechanisms by which crystalline mannitol improves the reconstitution time of high concentration lyophilized protein formulations. Eur J Pharm Biopharm. 2018;131:70–81. https://doi.org/10.1016/j.ejpb.2018.07.022
16. Li J, Chen J, An L, et al. Polyol and sugar osmolytes can shorten protein hydrogen bonds to modulate function. Commun Biol. 2020;3:528. https://doi.org/10.1038/s42003-020-01260-1
17. Fraise AP, Maillard JY, Sattar SA, eds. Russell, Hugo & Ayliffe’s: Principles and practice of disinfection, preservation and sterilization. 5th ed. Chichester: Wiley–Blackwell; 2013. https://doi.org/10.1002/9781118425831
18. Stroppel L, Schultz-Fademrecht T, Cebulla M, et al. Antimicrobial preservatives for protein and peptide formulations: An overview. Pharmaceutics. 2023;15(2):563. https://doi.org/10.3390/pharmaceutics15020563
19. Xie J, Ottaviani G, Sun K, et al. Potential confounding effects of benzyl alcohol as a formulation excipient support the elimination of the abnormal toxicity test from pharmacopoeias. Regul Toxicol Pharmacol. 2015;73(2):509–14. https://doi.org/10.1016/j.yrtph.2015.09.033
20. Bis RL, Singh SM, Cabello-Villegas J, Mallela KMG. Role of benzyl alcohol in the unfolding and aggregation of interferon α-2a. J Pharm Sci. 2014;104(2):407–15. https://doi.org/10.1002/jps.24105
21. Zhang Y, Roy S, Jones LS, et al. Mechanism for benzyl alcohol-induced aggregation of recombinant human interleukin-1-receptor antagonist in aqueous solution. J Pharm Sci. 2004;93(12):3076–89. https://doi.org/10.1002/jps.2019
22. Bis RL, Mallela KM. Antimicrobial preservatives induce aggregation of interferon alpha-2a: The order in which preservatives induce protein aggregation is independent of the protein. Int J Pharm. 2014;472(1–2):356–61. https://doi.org/10.1016/j.ijpharm.2014.06.044
23. Arora J, Joshi SB, Middaugh CR, et al. Correlating the effects of antimicrobial preservatives on conformational stability, aggregation propensity, and backbone flexibility of an IgG1 mAb. J Pharm Sci. 2017;106(6):1508–18. https://doi.org/10.1016/j.xphs.2017.02.007
24. Jiang G, Joshi SB, Peek LJ, et al. Anthrax vaccine powder formulations for nasal mucosal delivery. J Pharm Sci. 2006;95(1):80–96. https://doi.org/10.1002/jps.20484
25. Alsenaidy MA, Kim JH, Majumdar R, et al. High-throughput biophysical analysis and data visualization of conformational stability of an IgG1 monoclonal antibody after deglycosylation. J Pharm Sci. 2013;102(11): 3942–56. https://doi.org/10.1002/jps.23730
26. Telikepalli SN, Kumru OS, Kalonia C, et al. Structural characterization of IgG1 mAb aggregates and particles generated under various stress conditions. J Pharm Sci. 2014;103(3):796–809. https://doi.org/10.1002/jps.23839
27. Goldberg DS, Lewus RA, Esfandiary R, et al. Utility of high throughput screening techniques to predict stability of monoclonal antibody formulations during early stage development. J Pharm Sci. 2017;106(8):1971–7. https://doi.org/10.1016/j.xphs.2017.04.039
28. Yoshizawa S, Oki S, Arakawa T, Shiraki K. Trimethylamine N-oxide (TMAO) is a counteracting solute of benzyl alcohol for multi-dose formulation of immunoglobulin. Int J Biol Macromol. 2018;107(Pt A):984–9. https://doi.org/10.1016/j.ijbiomac.2017.09.072
29. Caringal RT, Hickey JM, Sharma N, et al. A combined LC-MS and immunoassay approach to characterize preservative-induced destabilization of human papillomavirus virus-like particles adsorbed to an aluminum-salt adjuvant. Vaccines (Basel). 2024;12(6):580. https://doi.org/10.3390/vaccines12060580
30. Johnston A, Uren E, Johnstone D, Wu J. Low pH, caprylate incubation as a second viral inactivation step in the manufacture of albumin. Parametric and validation studies. Biologicals. 2003;31(3):213–21. https://doi.org/10.1016/s1045-1056(03)00062-9
31. Ohbo M, Katoh K, Sasaki Y. Effects of saturated fatty acids on amylase release from exocrine pancreatic segments of sheep, rats, hamsters, field voles and mice. J Comp Physiol B. 1996;166(5):305–9. https://doi.org/10.1007/BF02439916
32. Hillgartner FB, Charron T. Arachidonate and medium-chain fatty acids inhibit transcription of the acetyl-CoA carboxylase gene in hepatocytes in culture. J Lipid Res. 1997;38(12):2548–57.
33. Tomilin MV, Korotkova TV, Loginov PA. Comparative analysis of quality attributes of a human albumin preparation with a modified stabilizing composition. Biological Products. Preventions, Diagnosis, Treatment. 2023;23(3–1): 411–21 (In Russ.). https://doi.org/10.30895/2221-996X-2023-23-3-1-411-421
34. Grabarek AD, Bozic U, Rousel J, et al. What makes polysorbate functional? Impact of polysorbate 80 grade and quality on IgG stability during mechanical stress. J Pharm Sci. 2020;109(1):871–80. https://doi.org/10.1016/j.xphs.2019.10.015
35. Chen D, Luo W, Hoffman J, et al. Insights into virus inactivation by polysorbate 80 in the absence of solvent. Biotechnol Prog. 2020;36(3):e2953. https://doi.org/10.1002/btpr.2953
36. Tomlinson A, Demeule B, Lin B, Yadav S. Polysorbate 20 degradation in biopharmaceutical formulations: quantification of free fatty acids, characterization of particulates, and insights into the degradation mechanism. Mol Pharm. 2015;12(11):3805–15. https://doi.org/10.1021/acs.molpharmaceut.5b00311
37. Jones MT, Mahler HC, Yadav S, et al. Considerations for the use of polysorbates in biopharmaceuticals. Pharm Res. 2018;35(8):148. https://doi.org/10.1007/s11095-018-2430-5
38. Dixit N, Salamat-Miller N, Salinas PA, Taylor KD. Residual host cell protein promotes polysorbate 20 degradation in a sulfatase drug product leading to free fatty acid particles. J Pharm Sci. 2016;105(5):1657–66. https://doi.org/10.1016/j.xphs.2016.02.029
39. Hall T, Sandefur SL, Frye CC, et al. Polysorbates 20 and 80 degradation by group XV lysosomal phospholipase A2 isomer X1 in monoclonal antibody formulations. J Pharm Sci. 2016;105(5);1633–42. https://doi.org/10.1016/j.xphs.2016.02.022
40. Sun MF, Liao JN, Jing ZY, et al. Effects of polyol excipient stability during storage and use on the quality of biopharmaceutical formulations. J Pharm Anal. 2022;12(5):774–82. https://doi.org/10.1016/j.jpha.2022.03.003
41. Del Giudice G, Rappuoli R, Didierlaurent AM. Correlates of adjuvanticity: A review on adjuvants in licensed vaccines. Semin Immunol. 2018;39:14–21. https://doi.org/10.1016/j.smim.2018.05.001
42. O’Hagan DT, Friedland LR, Hanon E, Didierlaurent AM. Towards an evidence based approach for the development of adjuvanted vaccines. Curr Opin Immunol. 2017;47:93–102. https://doi.org/10.1016/j.coi.2017.07.010
43. Ko EJ, Kang SM. Immunology and efficacy of MF59-adjuvanted vaccines. Hum Vaccin Immunother. 2018;14(12):3041–5. https://doi.org/10.1080/21645515.2018.1495301
44. Didierlaurent AM, Laupèze B, Di Pasquale A, et al. Adjuvant system AS01: helping to overcome the challenges of modern vaccines. Expert Rev Vaccines. 2016;16(1):55–63. https://doi.org/10.1080/14760584.2016.1213632
45. Del Giudice G, Rappuoli R. Inactivated and adjuvanted influenza vaccines. Curr Top Microbiol Immunol. 2015;386:151–80. https://doi.org/10.1007/82_2014_406
46. Roman F, Clément F, Dewé W, et al. Effect on cellular and humoral immune responses of the AS03 adjuvant system in an A/H1N1/2009 influenza virus vaccine administered to adults during two randomized controlled trials. Clin Vaccine Immunol. 2011;18(5):835–43. https://doi.org/10.1128/CVI.00480-10
47. Karaulov AV, Bykov AS, Volkova NV. Review of Gripol Family vaccine studies and modern adjuvant development. Epidemiology and Vaccinal Prevention. 2019;18(4):101–19 (In Russ.). https://doi.org/10.31631/2073-3046-2019-18-4-101-119
48. Nikiforova AN, Bushmenkov DS, Merkulov VA, Stepanov NN. Results of the study of the immunogenicity of the inactivated seasonal influenza vaccine with the adjuvant “Sovidon™”. Doctor–Pharmacist–Patient. 2011;(1):М8 (In Russ.).
49. Shmarov MM, Alekseeva SV, Dovzhenko NA, et al. Safety, reactogenicity, and immunogenicity of a viral vector vaccine against influenza A: Phase I open clinical trial. Biological Products. Prevention, Diagnosis, Treatment. 2025;25(1):7–21 (In Russ.). https://doi.org/10.30895/2221-996X-2025-25-1-7-21
50. Elkashif A, Alhashimi M, Sayedahmed EE, et al. Adenoviral vector-based platforms for developing effective vaccines to combat respiratory viral infections. Clin Transl Immunology. 2021;10(10):e1345. https://doi.org/10.1002/cti2.1345
51. Muravyeva A, Smirnikhina S. Strategies for modifying adenoviral vectors for gene therapy. Int J Mol Sci. 2024;25(22):12461. https://doi.org/10.3390/ijms252212461
52. Ramachandran S, Satapathy SR, Dutta T. Delivery strategies for mRNA vaccines. Pharmaceut Med. 2022;36(1):11–20. https://doi.org/10.1007/s40290-021-00417-5
53. Adamo M, Dick LW Jr, Qiu D, et al. A simple reversed phase high-performance liquid chromatography method for polysorbate 80 quantitation in monoclonal antibody drug products. J. Chromatogr B Analyt Technol Biomed Life Sci. 2010;878(21):1865–70. https://doi.org/10.1016/j.jchromb.2010.04.039
54. Ilko D, Braun A, Germershaus O, et al. Fatty acid composition analysis in polysorbate 80 with high performance liquid chromatography coupled to charged aerosol detection. Eur J Pharm Biopharm. 2015;94:569–74. https://doi.org/10.1016/j.ejpb.2014.11.018
55. Christiansen A, Backensfeld T, Kühn S, Weitschies W. Stability of the non-ionic surfactant polysorbate 80 investigated by HPLC-MS and charged aerosol detector. Pharmazie. 2011;66(9):666–71. PMID: 22026121
56. Puschmann J, Evers DH, Müller-Goymann CC, Herbig ME. Development of a design of experiments optimized method for quantification of polysorbate 80 based on oleic acid using UHPLC-MS. J Chromatogr A. 2019;1599:136–43. https://doi.org/10.1016/j.chroma.2019.04.015
57. Shende N, Karale A, Bhagade S, et al. Evaluation of a sensitive GC–MS method to detect polysorbate 80 in vaccine preparation. J Pharm Biomed Anal. 2020;183:113126. https://doi.org/10.1016/j.jpba.2020.113126
58. Zhang R, Wang Y, Tan L, et al. Analysis of polysorbate 80 and its related compounds by RP-HPLC with ELSD and MS detection. J Сhromatogr Sci. 2012;50(7):598–607. https://doi.org/10.1093/chromsci/bms035
59. Tania TH, Moore JM, Patapoff TW. Single step method for the accurate concentration determination of polysorbate 80. J Chromatogr A. 1997;786(1):99–106. https://doi.org/10.1016/S0021-9673(97)00540-2
60. Nair LM, Stephens NV, Vincent S, et al. Determination of polysorbate 80 in parenteral formulations by high-performance liquid chromatography and evaporative light scattering detection. J Chromatogr A. 2003;1012(1):81–6. https://doi.org/10.1016/S0021-9673(03)01105-1
61. Shi S, Chen Z, Rizzo JM, et al. A highly sensitive method for the quantitation of polysorbate 20 and 80 to study the compatibility between polysorbates and m-cresol in the peptide formulation. J Anal Bioanal Tech. 2015;6(3):1–8. https://doi.org/10.4172/2155-9872.1000245
62. Fekete S, Ganzler K, Fekete J. Fast and sensitive determination of polysorbate 80 in solutions containing proteins. J Pharm Biomed Anal. 2010;52(5):672–9. https://doi.org/10.1016/j.jpba.2010.02.035
63. Pan J, Ji Y, Du Z, Zhang J. Rapid characterization of commercial polysorbate 80 by ultra-high performance supercritical fluid chromatography combined with quadrupole time-of-flight mass spectrometry. J Chromatogr A. 2016;1465:190–6. https://doi.org/10.1016/j.chroma.2016.08.051
64. Kim J, Qiu J. Quantitation of low concentrations of polysorbates in high protein concentration formulations by solid phase extraction and cobalt-thiocyanate derivatization. Anal Chim Acta. 2014;806:144–51. https://doi.org/10.1016/j.aca.2013.11.005
65. Savjani N, Babcock E, Khor HK, Raghani A. Use of ferric thiocyanate derivatization for quantification of polysorbate 80 in high concentration protein formulations. Talanta. 2014;130:542–6. https://doi.org/10.1016/j.talanta.2014.07.052
66. McKean DL, Pesce AJ, Koo W. Analysis of polysorbate and its polyoxyethylated metabolite. Anal Biochim. 1987;161(2):348–51. https://doi.org/10.1016/0003-2697(87)90461-1
67. Zheng S, Smith P, Burton L, Adams ML. Sensitive fluorescence-based method for the rapid determination of polysorbate-80 content in therapeutic monoclonal antibody products. Pharm Dev Technol. 2015;20(7):872–6. https://doi.org/10.3109/10837450.2014.930490
68. Berridge BJ, Chao WR, Peters JH. Analysis of plasma and urinary amino acids by ion-exchange column chromatography. Am J Clin Nutr. 1971;24(8):934–9. https://doi.org/10.1093/ajcn/24.8.934
69. Fekkes D, van Dalen A, Edelman M, Voskuilen A. Validation of the determination of amino acids in plasma by high-performance liquid chromatography using automated pre-column derivatization with o-phtaldialdehyde. J Chromatogr B Biomed Appl. 1995;669(2):177–86. https://doi.org/10.1016/0378-4347(95)00111-U
70. Fekkes D. State-of-the-art of high-performance liquid chromatographic analysis of amino acids in physiological samples. J Chromatogr B Biomed Appl. 1996;682(1):3–22. https://doi.org/10.1016/0378-4347(96)00057-6
71. Dai Z, Wu Z, Jia S, Wu G. Analysis of amino acid composition in proteins of animal tissues and foods as pre-column o-phthaldialdehyde derivatives by HPLC with fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;964:116–27. https://doi.org/10.1016/j.jchromb.2014.03.025
72. Cohen SA. Amino acid analysis using precolumn derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. Methods Mol Biol. 2000;159:39–47. https://doi.org/10.1385/1-59259-047-0:039
73. Ichihara K, Kohsaka C, Yamamoto Y. Determination of proteinaceous free amino acids by gas chromatography. Anal Biochem. 2021;633:114423. https://doi.org/10.1016/j.ab.2021.114423
74. Desmons A, Thioulouse E, Hautem JY, et al. Direct liquid chromatography tandem mass spectrometry analysis of amino acids in human plasma. J Chromatogr A. 2020:1622:461135. https://doi.org/10.1016/j.chroma.2020.461135
75. Kaspar H, Dettmer K, Chan Q, et al. Urinary amino acid analysis: a comparison of iTRAQ-LC-MS/MS, GC-MS, and amino acid analyzer. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877(20–21):1838–46. https://doi.org/10.1016/j.jchromb.2009.05.019
76. Mahgoub S. Validated RP-HPLC method for quantitative determination of tolfenamic acid and benzyl alcohol in a veterinary pharmaceutical preparation. Austin Chromatogr. 2017;4(1):1046.
77. Čudina OA, Čomor MI, Janković I.A. Simultaneous determination of bifonazole and benzyl alcohol in pharmaceutical formulations by reverse-phase HPLC. Chroma. 2005;61:415–8. https://doi.org/10.1365/s10337-005-0524-9
78. Yu MW, Finlayson JS, Quantitative determination of the stabilizers octanoic acid and N-Acetyl-DL-tryptophan in human albumin products. J Pharm Sci. 1984;73(1):82–6. https://doi.org/10.1002/jps.2600730122
79. Dengler T, Kellner S, Fürst G. Quantitative determination of sodium-octanoate in human serum albumin preparations. Infusionstherapie. 1988;15(6):273–4. https://doi.org/10.1159/000222305
80. Jiang CL, Wang LN, Han JH, Ye J. Detection of sodium caprylate in human serum albumin by precolumn derivation reversed phase high performance liquid chromatography. Chinese J Anal Сhem. 2010;38(3):425–8. https://doi.org/10.3724/SP.J.1096.2010.00425
81. Athavale M, Fernandes A, Kaundinya J, Daftary G. Validation of a simple, rapid and cost effective method for the estimation of caprylic acid and sodium caprylate from biological products using NEFA-C kit. Biologicals. 2010;38(2):321–4. https://doi.org/10.1016/j.biologicals.2009.10.001
82. Yang H, Fei C, Wang S, et al. Validation of an HPLC-CAD method for measuring the lipid content of novel LNP-encapsulated COVID-19 mRNA vaccines. J Virol Methods. 2024;330:115040. https://doi.org/10.1016/j.jviromet.2024.115040
83. Rounova OB, Korotkov MG, Ustinnikova OB. Development of a quantitative determination method for polysorbate 80 in biologicals by size-exclusion high-performance liquid chromatography. Pharm Chem J. 2024;57(12):2013–8. https://doi.org/10.1007/s11094-024-03110-4
84. Rounova OB, Korotkov MG, Ustinnikova OB. Determination of polysorbate 80 in biological medicinal products. Patent of the Russian Federation No 2812788; 2024 (In Russ.). EDN: VMQXVZ
85. Rounova О, Demin P, Korotkov M, et al. Development of a hydrophilic interaction high-performance liquid chromatography method for the determination of glycine in formulations of therapeutic immunoglobulins. Anal Bioanal Chem. 2018;410(26):6935–42. https://doi.org/10.1007/s00216-018-1297-y
86. Runova OB, Korotkov MG, Ustinnikova OB. Development of the conditions for direct quantitative determination of amino acids in biologicals by hydrophilic interaction HPLC. Pharm Chem J. 2021;55(6):621–6. https://doi.org/10.1007/s11094-021-02467-0
87. Runova OB, Korotkov MG, Ustinnikova OB. Method for quantitative determination of glycine in biological medicinal preparations by hydrophilic high-performance liquid chromatography. Patent of the Russian Federation No 2700831; 2019 (In Russ.). EDN: FQWVES
88. Minero AS, Rounova OB, Korotkov MG, Ustinnikova OB. Development of an ion-exchange HPLC technique for quantitative determination of carbohydrate stabilizers in biological medicinal products. Pharm Chem J. 2023:57(4):578–83. https://doi.org/10.1007/s11094-023-02923-z
89. Minero AS, Rounova OB, Korotkov MG, Ustinnikova OB. Development of a method for the quantitative determination of carbohydrate stabilizers in biological drugs based on the HPLC method with refractometric detection. Pharm Chem J. 2024;58(3):512–8. https://doi.org/10.1007/s11094-024-03172-4
90. Minero AS, Rounova OB, Korotkov MG, Ustinnikova OB. Determination of carbohydrate stabilizers in biologically active preparations. Patent of the Russian Federation No 2816030; 2024 (In Russ.). EDN: LWHOTF
91. Kolesnikova ON, Runova OB, Ustinnikova OB. Development and validation of a gas-liquid chromatography method for quantitative determination of phenol in biological medicinal products. Pharm Chem J. 2018;52(5):478–82. https://doi.org/10.1007/s11094-018-1843-0
92. Kolesnikova ON, Ustinnikova OB, Rounova OB. Method for quantitative determination of phenol in biological medicinal preparations by gas-liquid chromatography. Patent of the Russian Federation No 2693518; 2019 (In Russ.). EDN: CMEFUS
Supplementary files
Review
For citations:
Minero A.S., Rounova O.B., Shcherbachenko I.M., Ustinnikova O.B. Excipients in biological medicinal products: Functional classification, stability issues, and analytical quantitation approaches. Biological Products. Prevention, Diagnosis, Treatment. 2025;25(3):307-320. (In Russ.) https://doi.org/10.30895/2221-996X-2025-25-3-307-320