Preview

Biological Products. Prevention, Diagnosis, Treatment

Advanced search

Application of therapeutic nucleic acids and RNA interference to create products for personalised medicine

https://doi.org/10.30895/2221-996X-2024-24-2-157-171

Abstract

INTRODUCTION. Small interfering RNAs (siRNAs) are among the most promising types of therapeutic nucleic acids aiming at the inhibition of pathogenetically relevant gene expression through the RNA interference mechanism. However, the limited bioavailability and immunogenicity of siRNAs and imperfect delivery systems hinder the clinical potential and applicability of siRNA medicinal products.
AIM. This study aimed to summarise recent advances in the development of siRNA medicinal products and the corresponding delivery systems, review clinical trial results, and outline future development prospects for these medicinal products.
DISCUSSION. This article covers the molecular mechanisms underlying RNA interference, the considerations for siRNA development, and the techniques for effective siRNA delivery. The article dwells upon various systems for nucleic acid delivery to targeted cells. The most promising delivery systems are non-viral systems, including liposomes, exosomes, nanoparticles, polymers, cell-penetrating peptides, and GalNAc ligands. Their main advantages include their ease of complexation with nucleic acids, modification and functionalization potential, favourable safety profile, ability to cross biological barriers, and tropism to target tissues. The article summarises the information that has accumulated over the past few years in clinical trials of siRNA medicinal products for a range of conditions, including metabolic disorders, infections, and cancers, as well as hereditary, ophthalmic, renal, and hepatic diseases. Special attention is paid to siRNA medicinal products undergoing clinical trials (over 10 products) and approved for clinical use (6 products, including MIR 19, the first authorised Russian siRNA medicinal product).
CONCLUSION. Ultimately, siRNA medicinal products are a promising tool for personalised medicine, exhibiting therapeutic potential for a wide range of pathological conditions. Further studies of siRNA medicinal products should aim at improving siRNA production technology to increase their bioavailability and half-life period. In addition, these studies should aim at enhancing delivery systems for these products to mitigate toxicity risks and maximise efficacy.

About the Authors

I. P. Shilovskiy
National Research Center—Institute of Immunology
Russian Federation

Igor P. Shilovskiy, Dr. Sci. (Biol.)

24 Kashirskoe Hwy, Moscow 115522



G. B. Pasikhov
National Research Center—Institute of Immunology
Russian Federation

George B. Pasikhov

24 Kashirskoe Hwy, Moscow 115522



V. V. Smirnov
National Research Center—Institute of Immunology; I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Valery V. Smirnov, Dr. Sci. (Pharm.)

24 Kashirskoe Hwy, Moscow 115522

8/2 Trubetskaya St., Moscow 119991



I. A. Kofiadi
National Research Center—Institute of Immunology
Russian Federation

Ilya A. Kofiadi, Dr. Sci. (Biol.)

24 Kashirskoe Hwy, Moscow 115522



M. V. Popova
National Research Center—Institute of Immunology; N.I. Pirogov Russian National Research Medical University
Russian Federation

Maiia V. Popova

24 Kashirskoe Hwy, Moscow 115522

1 Ostrovityanov St., Moscow 117513



P. A. Strueva
National Research Center—Institute of Immunology; Peoples’ Friendship University of Russia named after Patrice Lumumba
Russian Federation

Polina A. Strueva

24 Kashirskoe Hwy, Moscow 115522

6 Miklukho-Maklay St., Moscow 117198



M. R. Khaitov
National Research Center—Institute of Immunology; N.I. Pirogov Russian National Research Medical University
Russian Federation

Musa R. Khaitov, Dr. Sci. (Med.), Professor, Corr. Member of RAS

24 Kashirskoe Hwy, Moscow 115522

1 Ostrovityanov St., Moscow 117513



References

1. Timotievich ED, Shilovskiy IP, Khaitov MR. Cell-penetrating peptides as vehicles for delivery of therapeutic nucleic acids. Mechanisms and application in medicine. Biochemistry (Moscow). 2023;88:1800–17. https://doi.org/10.1134/S0006297923110111

2. Agrawal N, Dasaradhi PVN, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK. RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev. 2003;67(4):657–85. https://doi.org/10.1128/MMBR.67.4.657-685.2003

3. Wilson RC, Doudna JA. Molecular mechanisms of RNA interference. Annu Rev Biophys. 2013;42:217–39. https://doi.org/10.1146/annurev-biophys-083012-130404

4. Gangopadhyay S, Gore KR. Advances in siRNA therapeutics and synergistic effect on siRNA activity using emerging dual ribose modifications. RNA Biol. 2022;19(1):452–67. https://doi.org/10.1080/15476286.2022.2052641

5. Kang H, Ga YJ, Kim SH, Cho YH, Kim JW, Kim C, et al. Small interfering RNA (siRNA)-based therapeutic applications against viruses: principles, potential, and challenges. J Biomed Sci. 2023;30(1):88. https://doi.org/10.1186/S12929-023-00981-9

6. Wang Y, Zhang R, Tang L, Yang L. Nonviral delivery systems of mRNA vaccines for cancer gene therapy. Pharmaceutics. 2022;14(3):512. https://doi.org/10.3390/pharmaceutics14030512

7. Yan Y, Liu XY, Lu A, Wang XY, Jiang LX, Wang JC. Non-viral vectors for RNA delivery. J Control Release. 2022;342:241–79. https://doi.org/10.1016/J.JCONREL.2022.01.008

8. Roberts TC, Langer R, Wood MJA. Advances in oligonucleotide drug delivery. Nat Rev Drug Discov. 2020;19(10):673–94. https://doi.org/10.1038/S41573-020-0075-7

9. An G. Pharmacokinetics and pharmacodynamics of GalNAc-Conjugated siRNAs. J Clin Pharmacol. 2024;64(1):45–57. https://doi.org/10.1002/JCPH.2337

10. Khan MM, Filipczak N, Torchilin VP. Cell penetrating peptides: a versatile vector for co-delivery of drug and genes in cancer. J Control Release. 2021;330:1220–8. https://doi.org/10.1016/j.jconrel.2020.11.028

11. Falato L, Gestin M, Langel Ü. Cell-penetrating peptides delivering siRNAs: an overview. Methods Mol Biol. 2021;2282:329–52. https://doi.org/10.1007/978-1-0716-1298-9_18

12. Kozhikhova KV, Shilovskiy IP, Shatilov AA, Timofeeva AV, Turetskiy EA, Vishniakova LI, et al. Linear and dendrimeric antiviral peptides: Design, chemical synthesis and activity against human respiratory syncytial virus. J Mater Chem B. 2020;8:2607–17. https://doi.org/10.1039/c9tb02485a

13. Shilovskiy I, Nikonova A, Barvinskaia E, Kaganova M, Nikolskii A, Vishnyakova L, et al. Anti-inflammatory effect of siRNAs targeted IL-4 and IL-13 in a mouse model of allergic rhinitis. Allergy. 2022;77(9):2829–32. https://doi.org/10.1111/ALL.15366

14. Nikolskii AA, Shilovskiy IP, Yumashev KV, Vishniakova LI, Barvinskaia ED, Kovchina VI, et al. Effect of local suppression of Stat3 gene expression in a mouse model of pulmonary neutrophilic inflammation. Immunologiya. 2021;42(6):600–14 (In Russ.). https://doi.org/10.33029/0206-4952-2021-42-6-600-614

15. Khaitov M, Nikonova A, Shilovskiy I, Kozhikhova K, Kofiadi I, Vishnyakova L, et al. Silencing of SARS-CoV-2 with modified siRNA-peptide dendrimer formulation. Allergy. 2021;76(9):2840–54. https://doi.org/10.1111/ALL.14850

16. Friedrich M, Aigner A. Therapeutic siRNA: state-of-the-art and future perspectives. Biodrugs. 2022;36(5):549–71. https://doi.org/10.1007/S40259-022-00549-3

17. Badri P, Jiang X, Borodovsky A, Najafian N, Kim J, Clausen VA, et al. Pharmacokinetic and pharmacodynamic properties of cemdisiran, an RNAi therapeutic targeting complement component 5, in healthy subjects and patients with paroxysmal nocturnal hemoglobinuria. Clin Pharmacokinet. 2021;60(3):365–78. https://doi.org/10.1007/S40262-020-00940-9

18. Barratt J, Liew A, Yeo SC, Fernström A, Barbour SJ, Sperati CJ, et al. Phase 2 trial of cemdisiran in adult patients with IgA nephropathy: a randomized controlled trial. Clin J Am Soc Nephrol. 2024;19(4):452–62. https://doi.org/10.2215/CJN.0000000000000384

19. Pasi KJ, Lissitchkov T, Mamonov V, Mant T, Timofeeva M, Bagot C, et al. Targeting of antithrombin in hemophilia A or B with investigational siRNA therapeutic fitusiran: results of the phase 1 inhibitor cohort. J Thromb Haemost. 2021;19(6):1436–46. https://doi.org/10.1111/JTH.15270

20. Srivastava A, Rangarajan S, Kavakli K, Klamroth R, Kenet G, Khoo L, et al. Fitusiran prophylaxis in people with severe haemophilia A or haemophilia B without inhibitors (ATLAS-A/B): a multicentre, open-label, randomised, phase 3 trial. Lancet Haematol. 2023;10(5):322–32. https://doi.org/10.1016/S2352-3026(23)00037-6

21. Gane EJ, Kim W, Lim TH, Tangkijvanich P, Yoon JH, Sievert W, et al. First-in-human randomized study of RNAi therapeutic RG6346 for chronic hepatitis B virus infection. J Hepatol. 2023;79(5):1139–49. https://doi.org/10.1016/J.JHEP.2023.07.026

22. Gottlieb J, Zamora MR, Hodges T, Musk AW, Sommerwerk U, Dilling D, et al. ALN-RSV01 for prevention of bronchiolitis obliterans syndrome after respiratory syncytial virus infection in lung transplant recipients. J Heart Lung Transplant. 2016;35(2):213–21. https://doi.org/10.1016/J.HEALUN.2015.08.012

23. DeVincenzo J, Lambkin-Williams R, Wilkinson T, Cehelsky J, Nochur S, Walsh E, et al. A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus. Proc Natl Acad Sci USA. 2010;107(19):8800–5. https://doi.org/10.1073/PNAS.0912186107

24. Zamora MR, Budev M, Rolfe M, Gottlieb J, Humar A, DeVincenzo J, et al. RNA interference therapy in lung transplant patients infected with respiratory syncytial virus. Am J Respir Crit Care Med. 2011;183(4):531–8. https://doi.org/10.1164/RCCM.201003-0422OC

25. Kumthekar P, Ko CH, Paunesku T, Dixit K, Sonabend AM, Bloch O, et al. A first-in-human phase 0 clinical study of RNA interference-based spherical nucleic acids in patients with recurrent glioblastoma. Sci Transl Med. 2021;13(584):3945. https://doi.org/10.1126/SCITRANSLMED.ABB3945

26. Singerman L. Combination therapy using the small interfering RNA bevasiranib. Retina. 2009;29(6 Suppl):49–50. https://doi.org/10.1097/IAE.0B013E3181AD2341

27. Garba AO, Mousa SA. Bevasiranib for the treatment of wet, age-related macular degeneration. Ophthalmol Eye Dis. 2010;2:75–83. https://doi.org/10.4137/OED.S4878

28. Cho WG, Albuquerque RJC, Kleinman ME, Tarallo V, Greco A, Nozaki M, et al. Small interfering RNA-induced TLR3 activation inhibits blood and lymphatic vessel growth. Proc Natl Acad Sci USA. 2009;106(17):7137–42. https://doi.org/10.1073/PNAS.0812317106

29. Lu LJ, Tsai JC, Liu J. Novel pharmacologic candidates for treatment of primary open-angle glaucoma. Yale J Biol Med. 2017;90(1):111–18. PMCID: PMC5369028

30. Moreno-Montañés J, Bleau AM, Jimenez AI. Tivanisiran, a novel siRNA for the treatment of dry eye disease. Expert Opin Investig Drugs. 2018;27(4):421–6. https://doi.org/10.1080/13543784.2018.1457647

31. Ahn I, Kang CS, Han J. Where should siRNAs go: applicable organs for siRNA drugs. Exp Mol Med. 2023;55(7):1283–92. https://doi.org/10.1038/s12276-023-00998-y

32. Thielmann M, Corteville D, Szabo G, Swaminathan M, Lamy A, Lehner LJ, et al. Teprasiran, a small interfering RNA, for the prevention of acute kidney injury in high-risk patients undergoing cardiac surgery: a randomized clinical study. Circulation. 2021;144(14):1133–44. https://doi.org/10.1161/CIRCULATIONAHA.120.053029

33. Paunovska K, Loughrey D, Dahlman JE. Drug delivery systems for RNA therapeutics. Nat Rev Genet. 2022;23(5):265–80. https://doi.org/10.1038/s41576-021-00439-4

34. Zhang X, Goel V, Robbie GJ. Pharmacokinetics of patisiran, the first approved RNA interference therapy in patients with hereditary transthyretin-mediated amyloidosis. J Clin Pharmacol. 2019;60(5):573–85. https://doi.org/10.1002/jcph.1553

35. Suhr OB, Coelho T, Buades J, Pouget J, Conceicao I, Berk J, et al. Efficacy and safety of patisiran for familial amyloidotic polyneuropathy: a phase II multi-dose study. Orphanet J Rare Dis. 2015;10:109. https://doi.org/10.1186/s13023-015-0326-6

36. Taylor L, Gidal B, Blakey G, Tayo B, Morrison G. A phase I, randomized, double-blind, placebo-controlled, single ascending dose, multiple dose, and food effect trial of the safety, tolerability and pharmacokinetics of highly purified cannabidiol in healthy subjects. CNS Drugs. 2018;32(11):1053–67. https://doi.org/10.1007/s40263-018-0578-5

37. Kristen AV, Ajroud-Driss S, Conceição I, Gorevic P, Kyriakides T, Obici L. Patisiran, an RNAi therapeutic for the treatment of hereditary transthyretin-mediated amyloidosis. Neurodegener Dis Manag. 2019;9(1):5–23. https://doi.org/10.2217/nmt-2018-0033

38. Solomon SD, Adams D, Kristen A, Grogan M, González-Duarte A, Maurer MS, et al. Effects of patisiran, an RNA interference therapeutic, on cardiac parameters in patients with hereditary transthyretin-mediated amyloidosis. Circulation. 2019;139(4):431–43. https://doi.org/10.1161/CIRCULATIONAHA.118.035831

39. Sardh E, Harper P. RNAi therapy with givosiran significantly reduces attack rates in acute intermittent porphyria. J Intern Med. 2022;291(5):593–610. https://doi.org/10.1111/joim.13443

40. Sardh E, Harper P, Balwani M, Stein P, Rees D, Bissell DM, et al. Phase 1 trial of an RNA interference therapy for acute intermittent porphyria. N Engl J Med. 2019;380(6):549–58. https://doi.org/10.1056/NEJMOA1807838

41. Balwani M, Sardh E, Ventura P, Peiró PA, Rees DC, Stölzel U, et al. Phase 3 trial of RNAi therapeutic givosiran for acute intermittent porphyria. N Engl J Med. 2020;382(24):2289–301. https://doi.org/10.1056/nejmoa1913147

42. Garrelfs SF, Frishberg Y, Hulton SA, Koren MJ, O’Riordan WD, Cochat P, et al. Lumasiran, an RNAi therapeutic for primary hyperoxaluria type 1. N Engl J Med. 2021;384(13):1216–26. https://doi.org/10.1056/nejmoa2021712

43. Frishberg Y, Deschenes G, Groothoff JW, Hulton SA, Magen D, Harambat J, et al. Phase 1/2 study of lumasiran for treatment of primary hyperoxaluria type 1: a placebocontrolled randomized clinical trial. Clin J Am Soc Nephrol. 2021;16(7):1025–36. https://doi.org/10.2215/CJN.14730920

44. Sas DJ, Magen D, Hayes W, Shasha-Lavsky H, Michael M, Schulte I, et al. Phase 3 trial of lumasiran for primary hyperoxaluria type 1: a new RNAi therapeutic in infants and young children. Genet Med. 2022;24(3):654–62. https://doi.org/10.1016/j.gim.2021.10.024

45. Scott LJ, Keam SJ. Lumasiran: first approval. Drugs. 2021;81(2):277–82. https://doi.org/10.1007/s40265-020-01463-0

46. Bardolia C, Amin NS, Turgeon J. Emerging non-statin treatment options for lowering low-density lipoprotein cholesterol. Front Cardiovasc Med. 2021;8:789931. https://doi.org/10.3389/fcvm.2021.789931

47. Abifadel M, Varret M, Rabès JP, Allard D, Ouguerram K, Devillers M, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34(2):154–6. https://doi.org/10.1038/ng1161

48. Nair JK, Willoughby JLS, Chan A, Charisse K, Alam MR, Wang Q, et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J Am Chem Soc. 2014;136(49):16958–61. https://doi.org/10.1021/ja505986a

49. Lamb YN. Inclisiran: first approval. Drugs. 2021;81(3):389–95. https://doi.org/10.1007/s40265-021-01473-6

50. Fitzgerald K, White S, Borodovsky A, Bettencourt BR, Strahs A, Clausen V, et al. A highly durable RNAi therapeutic inhibitor of PCSK9. N Engl J Med. 2017;376(1):41–51. https://doi.org/10.1056/nejmoa1609243

51. Ray KK, Wright RS, Kallend D, Koenig W, Leiter LA, Raal FJ, et al. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N Engl J Med. 2020;382(16):1507–19. https://doi.org/10.1056/nejmoa1912387

52. Reijman MD, Schweizer A, Peterson ALH, Bruckert E, Stratz C, Defesche JC, et al. Rationale and design of two trials assessing the efficacy, safety, and tolerability of inclisiran in adolescents with homozygous and heterozygous familial hypercholesterolaemia. Eur J Prev Cardiol. 2022;29(9):1361–8. https://doi.org/10.1093/eurjpc/zwac025

53. Syed YY. Nedosiran: first approval. Drugs. 2023;83(18):1729–33. https://doi.org/10.1007/s40265-023-01976-4

54. Lai C, Pursell N, Gierut J, Saxena U, Zhou W, Dills M, et al. Specific inhibition of hepatic lactate dehydrogenase reduces oxalate production in mouse models of primary hyperoxaluria. Mol Ther. 2018;26(8):1983–95. https://doi.org/10.1016/J.YMTHE.2018.05.016

55. Hoppe B, Koch A, Cochat P, Garrelfs SF, Baum MA, Groothoff JW, et al. Safety, pharmacodynamics, and exposure-response modeling results from a first-in-human phase 1 study of nedosiran (PHYOX1) in primary hyperoxaluria. Kidney Int. 2022;101(3):626–34. https://doi.org/10.1016/J.KINT.2021.08.015

56. Habtemariam BA, Karsten V, Attarwala H, Goel V, Melch M, Clausen VA, et al. Single-dose pharmacokinetics and pharmacodynamics of transthyretin targeting N-acetylgalactosamine-small interfering ribonucleic acid conjugate, vutrisiran, in healthy subjects. Clin Pharmacol Ther. 2021;109(2):372–82. https://doi.org/10.1002/CPT.1974

57. Mullard A. FDA approves fifth RNAi drug—Alnylam’s next-gen hATTR treatment. Nat Rev Drug Discov. 2022;21(8):548–9. https://doi.org/10.1038/D41573-022-00118-X

58. Khaitov MR, Nikonova AA, Kofiadi IA, Shilovskiy IP, Smirnov VV, Elisyutina OG, et al. Results of clinical trials phases I and II of MIR 19®. Immunologiya. 2023;44(3):291–316 (In Russ.). https://doi.org/10.33029/1816-2134-2023-44-3-291-316

59. Khaitov M, Nikonova A, Kofiadi I, Shilovskiy I, Smirnov V, Elisytina O, et al. Treatment of COVID-19 patients with a SARS-CoV-2-specific siRNA-peptide dendrimer formulation. Allergy. 2023;78(6):1639–53. https://doi.org/10.1111/ALL.15663


Supplementary files

Review

For citations:


Shilovskiy I.P., Pasikhov G.B., Smirnov V.V., Kofiadi I.A., Popova M.V., Strueva P.A., Khaitov M.R. Application of therapeutic nucleic acids and RNA interference to create products for personalised medicine. Biological Products. Prevention, Diagnosis, Treatment. 2024;24(2):157-171. (In Russ.) https://doi.org/10.30895/2221-996X-2024-24-2-157-171

Views: 1966


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2221-996X (Print)
ISSN 2619-1156 (Online)