Preview

Biological Products. Prevention, Diagnosis, Treatment

Advanced search

Current trends and risks associated with the use of therapies based on genome editing

https://doi.org/10.30895/2221-996X-2023-23-3-247-261

Abstract

Scientific relevance. To date, multiple approaches to genome editing have been developed based on different genome-editing systems (GESs) and genome modifications that result in single- or double-strand DNA breaks, either in vivo or ex vivo, followed by homologous recombination or non-homologous end joining to restore the sequence. However, the use of GESs is associated with a number of potential risks arising from the complex biology of such medicinal products and the fundamental role of their target, i.e. the DNA molecule.

Aim. This study analysed the most relevant trends and risks associated with medicinal products based on genome editing, the ways taken to overcome these risks, and the research methods used to identify and control the development of undesirable effects.

According to the literature, the adverse effects of GESs may arise both from the methods used to deliver GES components into the cell and from the functional activity of the GES itself, which includes insufficient on-target or undesirable off-target effects. This review indicates the main risks associated with the use of GESs. Preferable strategies to mitigate the risks of using GESs include repairing DNA breaks by homologous recombination, selecting GESs and related endonucleases that have greater specificity and restriction accuracy, increasing guide RNA specificity (for CRISPR/Cas), correcting the activity of the system regulating the cell cycle and apoptosis in a controlled manner, regulating the duration of expression and persistence of GES components in cells, etc.

Conclusions. The requirement to include quality, efficacy, and safety data when submitting registration dossiers for advanced therapy medicinal products prompts the discussion of the main risks associated with such products.

About the Authors

O. A. Rachinskaya
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Olga A. Rachinskaya, Cand. Sci. (Biol.)

8/2 Petrovsky Blvd, Moscow 127051



E. V. Melnikova
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Ekaterina V. Melnikova, Cand. Sci. (Biol.)

8/2 Petrovsky Blvd, Moscow 127051



V. A. Merkulov
Scientific Centre for Expert Evaluation of Medicinal Products; I. M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Vadim A. Merkulov, Dr. Sci. (Med.), Professor

8/2 Petrovsky Blvd, Moscow 127051

8/2 Trubetskaya St., Moscow 119991



References

1. Rebrikov DV. Human genome editing. Bulletin of RSMU. 2016;(3):4–15 (In Russ.). EDN: WFQBMX

2. Uddin F, Rudin CM, Sen T. CRISPR gene therapy: applications, limitations, and implications for the future. Front Oncol. 2020;10:1387. https://doi.org/10.3389/fonc.2020.01387

3. Cyranoski D. The CRISPR-baby scandal: what’s next for human gene-editing. Nature. 2019;566(7745):440–2. https://doi.org/10.1038/d41586-019-00673-1

4. Cohen J. Did CRISPR help—or harm—the first-ever gene-edited babies? Science. 2019. https://doi.org/10.1126/science.aay9569

5. Cox D, Platt R, Zhang F. Therapeutic genome editing: prospects and challenges. Nat Med. 2015;21(2):121–31. https://doi.org/10.1038/nm.3793

6. Lieber MR, Ma Y, Pannicke U, Schwarz K. Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol. 2003;4(9):712–20. https://doi.org/10.1038/nrm1202

7. Guirouilh-Barbat J, Lambert S, Bertrand P, Lopez BS. Is homologous recombination really an error-free process? Front Genet. 2014;5:175. https://doi.org/10.3389/fgene.2014.00175

8. Choi EH, Yoon S, Koh YE, Seo Y-J, Kim KP. Maintenance of genome integrity and active homologous recombination in embryonic stem cells. Exp Mol Med. 2020;52:1220–9. https://doi.org/10.1038/s12276-020-0481-2

9. Creeden JF, Nanavaty NS, Einloth KR, Gillman CE, Stanbery L, Hamouda DM, et al. Homologous recombination proficiency in ovarian and breast cancer patients. BMC Cancer. 2021;21(1):1154. https://doi.org/10.1186/s12885-021-08863-9

10. Lai JKH, Toh PJY, Cognart HA, Chouhan G, Saunders TE. DNA-damage induced cell death in yap1;wwtr1 mutant epidermal basal cells. Elife. 2022;11:e72302. https://doi.org/10.7554/eLife.72302

11. Yamaguchi T, Uchida E, Okada T, Ozawa K, Onodera M, Kume A, et al. Aspects of gene therapy products using gene editing technology in Japan. Hum Gene Ther. 2020;31(19–20):1043–53. https://doi.org/10.1089/hum.2020.156

12. Richardson C, Ray G, DeWitt M, Curie G, Corn J. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol. 2016;34(3):339–44. https://doi.org/10.1038/nbt.3481

13. DeWitt MA, Magis W, Bray NL, Wang T, Berman JR, Urbinati F, et al. Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Sci Transl Med. 2016;8(360):360ra134. https://doi.org/10.1126/scitranslmed.aaf9336

14. Lee K, Mackley VA, Rao A, Chong AT, Dewitt MA, Corn J, Murthy N. Synthetically modified guide RNA and donor DNA are a versatile platform for CRISPR-Cas9 engineering. Elife. 2017;6:e25312. https://doi.org/10.7554/eLife.25312

15. Goryaev AA, Savkina MV, Mefed KM, Bondarev VP, Merkulov VA, Tarasov VV. Genome-editing and biomedical cell products: current state, safety and efficacy. BIOpreparations. Prevention, Diagnosis, Treatment. 2018;18(3):140–9 (In Russ.). https://doi.org/10.30895/2221-996X-2018-18-3-140-149

16. Kim M-S, Kini AG. Engineering and application of zinc finger proteins and TALEs for biomedical research. Mol Cells. 2017;40(8):533–41. https://doi.org/10.14348/molcells.2017.0139

17. Yuanyuan X., Zhanjun Li. CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Comput Struct Biotechnol J. 2020;18:2401–15. https://doi.org/10.1016/j.csbj.2020.08.031

18. You L, Tong R, Li M, Liu Y, Xue J, Lu Y. Advancements and obstacles of CRISPR-Cas9 technology in translational research. Mol Ther Methods Clin Dev. 2019;13:359–70. https://doi.org/10.1016/j.omtm.2019.02.008

19. Pinjala P, Tryphena KP, Prasad R, Khatri DK, Sun W, Singh SB, et al. CRISPR/Cas9 assisted stem cell therapy in Parkinson’s disease. Biomater Res. 2023;27(1):46. https://doi.org/10.1186/s40824-023-00381-y

20. Frangoul H, Altshuler D, Cappellini MD, Chen YS, Domm J, Eustace BK, et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N Engl J Med. 2021;384(3):252–60. https://doi.org/10.1056/NEJMoa2031054

21. Erkut E, Yokota T. CRISPR therapeutics for Duchenne muscular dystrophy. Int J Mol Sci. 2022;23(3):1832. https://doi.org/10.3390/ijms23031832

22. Graham C, Hart S. CRISPR/Cas9 gene editing therapies for cystic fibrosis. Expert Opin Biol Ther. 2021;21(6):767–80. https://doi.org/10.1080/14712598.2021.1869208

23. Porteus MH. A new class of medicines through DNA editing. N Engl J Med. 2019;380(10):947–59. https://doi.org/10.1056/NEJMra1800729

24. Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA, Castellanos Rivera RM, et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science. 2016;351(6271):403–7. https://doi.org/10.1126/science.aad5143

25. Amoasii L, Hildyard JCW, Li H, Sanchez-Ortiz E, Mireault A, Caballero D, et al. Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science. 2018;362(6410):86–91. https://doi.org/10.1126/science.aau1549

26. Vakulskas CA, Dever DP, Rettig GR, Turk R, Jacobi AM, Collingwood MA, et al. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat Med. 2018;24(8):1216–24. https://doi.org/10.1038/s41591-018-0137-0

27. Chandrasekaran AP, Song M, Kim KS, Ramakrishna S. Different methods of delivering CRISPR/Cas9 into cells. Prog Mol Biol Transl Sci. 2018;159:157–76. https://doi.org/10.1016/bs.pmbts.2018.05.001

28. Chen F, Alphonse M, Liu Q. Strategies for nonviral nanoparticle-based delivery of CRISPR/Cas9 therapeutics. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;12(3):e1609. https://doi.org/10.1002/wnan.1609

29. Liu C, Zhang L, Liu H, Cheng K. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J Control Release. 2017;266:17–26. https://doi.org/10.1016/j.jconrel.2017.09.012

30. Fu Y, Foden J, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. 2013;31(9):822–6. https://doi.org/10.1038/nbt.2623

31. Zhang XH, Tee LY, Wang XG, Huang QS, Yang SH. Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids. 2015;4(11):e264. https://doi.org/10.1038/mtna.2015.37

32. Davies B. The technical risks of human gene editing. Hum Reprod. 2019;34(11):2104–11. https://doi.org/10.1093/humrep/dez162

33. Zuccaro MV, Xu J, Mitchell C, Marin D, Zimmerman R, Rana B, et al. Allele-specific chromosome removal after Cas9 cleavage in human embryos. Cell. 2020;183(6):1650-64.e15. https://doi.org/10.1016/j.cell.2020.10.025

34. Ding Q, Regan SN, Xia Y, Oostrom LA, Cowan CA, Musunuru K. Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell. 2013;12(4):393–4. https://doi.org/10.1016/j.stem.2013.03.006

35. Obermeier M, Vadolas J, Verhulst S, Goossens E, Baert Y. Lipofection of non-integrative CRISPR/Cas9 ribonucleoproteins in male germline stem cells: a simple and effective knockout tool for germline genome engineering. Front Cell Dev Biol. 2022;10:891173. https://doi.org/10.3389/fcell.2022.891173

36. Bittlinger M, Hoffmann D, Sierawska AK, Mertz M, Schambach A, Strech D. Risk assessment in gene therapy and somatic genome-editing: An expert interview study. Gene and Genome Editing. 2022;3–4:100011. https://doi.org/10.1016/j.ggedit.2022.100011

37. Stein S, Ott MG, Schultze-Strasser S, Jauch A, Burwinkel B, Kinner A, et al. Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nat Med. 2010;16(2):198–204. https://doi.org/10.1038/nm.2088

38. Taheri-Ghahfarokhi A, Taylor BJM, Nitsch R, Lundin A, Cavallo AL, Madeyski-Bengtson K, et al. Decoding non-random mutational signatures at Cas9 targeted sites. Nucleic Acids Res. 2018;46(16):8417–34. https://doi.org/10.1093/nar/gky653

39. Kosicki M, Tomberg K, Bradley A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol. 2018;36(8):765–71. https://doi.org/10.1038/nbt.4192

40. Boroviak K, Fu B, Yang F, Doe B, Bradley A. Revealing hidden complexities of genomic rearrangements generated with Cas9. Sci Rep. 2017;7(1):12867. https://doi.org/10.1038/s41598-017-12740-6

41. Yang Y, Wang L, Bell P, McMenamin D, He Z, White J, et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol. 2016;34(3):334–8. https://doi.org/10.1038/nbt.3469

42. Breese EH, Buechele C, Dawson C, Cleary ML, Porteus MH. Use of genome engineering to create patient specific MLL translocations in primary human hematopoietic stem and progenitor cells. PLoS One. 2015;10(9):e0136644. https://doi.org/10.1371/journal.pone.0136644

43. Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J. CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med. 2018;24(7):927–30. https://doi.org/10.1038/s41591-018-0049-z

44. Otto T, Sicinski P. Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer. 2017;17(2):93–115. https://doi.org/10.1038/nrc.2016.138

45. Ihry RJ, Worringer KA, Salick MR, Frias E, Ho D, Theriault K, et al. p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat Med. 2018;24(7):939–46. https://doi.org/10.1038/s41591-018-0050-6

46. Anderson KR, Haeussler M, Watanabe C, Janakiraman V, Lund J, Modrusan Z, et al. CRISPR off-target analysis in genetically engineered rats and mice. Nat Methods. 2018;15(7):512–4. https://doi.org/10.1038/s41592-018-0011-5

47. Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013;154(6):1380–9. https://doi.org/10.1016/j.cell.2013.08.021

48. Tycko J, Myer VE, Hsu PD. Methods for optimizing CRISPR-Cas9 genome editing specificity. Mol Cell. 2016;63(3):355–70. https://doi.org/10.1016/j.molcel.2016.07.004

49. Kocak DD, Josephs EA, Bhandarkar V, Adkar SS, Kwon JB, Gersbach CA. Increasing the specificity of CRISPR systems with engineered RNA secondary structures. Nat Biotechnol. 2019;37(6):657–66. https://doi.org/10.1038/s41587-019-0095-1

50. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science. 2016;351(6268):84–8. https://doi.org/10.1126/science.aad5227

51. Teng F, Cui T, Feng G, Guo L, Xu K, Gao Q, et al. Repurposing CRISPR-Cas12b for mammalian genome engineering. Cell Discov. 2018;4:63. https://doi.org/10.1038/s41421-018-0069-3

52. Vakulskas CA, Dever DP, Rettig GR, Turk R, Jacobi AM, Collingwood MA, et al. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat Med. 2018;24(8):1216–24. https://doi.org/10.1038/s41591-018-0137-0

53. Kim D, Kim J, Hur JK, Been KW, Yoon SH, Kim JS. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat Biotechnol. 2016;34(8):863–8. https://doi.org/10.1038/nbt.3609

54. Zuris JA, Thompson DB, Shu Y, Guilinger JP, Bessen JL, Hu JH, et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol. 2015;33(1):73–80. https://doi.org/10.1038/nbt.3081

55. Shen C-C, Hsu M-N, Chang C-W, Lin M-W, Hwu J-R, Tu Y, Hu Y-C. Synthetic switch to minimize CRISPR off-target effects by self-restricting Cas9 transcription and translation. Nucleic Acids Res. 2019;47(3):e13. https://doi.org/10.1093/nar/gky1165

56. Tu Z, Yang W, Yan S, Yin A, Gao J, Liu X, et al. Promoting Cas9 degradation reduces mosaic mutations in non-human primate embryos. Sci Rep. 2017;7:42081. https://doi.org/10.1038/srep42081

57. Hodgkins A, Farne A, Perera S, Grego T, Parry-Smith DJ, Skarnes WC, Iyer V. WGE: a CRISPR database for genome engineering. Bioinformatics. 2015;31(18):3078–80. https://doi.org/10.1093/bioinformatics/btv308

58. Haeussler M, Schönig K, Eckert H, Eschstruth A, Mianné J, Renaudet J-B, et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 2016;17(1):148. https://doi.org/10.1186/s13059-016-1012-2

59. Lessard S, Francioli L, Alfoldi J, Tardif JC, Ellinor PT, MacArthur DG, et al. Human genetic variation alters CRISPR-Cas9 on- and off-targeting specificity at therapeutically implicated loci. Proc Natl Acad Sci USA. 2017;114(52):E11257-E11266. https://doi.org/10.1073/pnas.1714640114

60. Miller NA, Farrow EG, Gibson M, Willig LK, Twist G, Yoo B, et al. A 26-hour system of highly sensitive whole genome sequencing for emergency management of genetic diseases. Genome Med. 2015;7:100. https://doi.org/10.1186/s13073-015-0221-8

61. Rachinskaya OA, Merkulov VA. Use of cytogenetic analysis methods for assessing the quality of cell lines in biomedical cell products. BIOpreparations. Prevention, Diagnosis, Treatment. 2018;18(1):25–32. (In Russ.). https://doi.org/10.30895/2221-996X-2018-18-1-2


Supplementary files

Review

For citations:


Rachinskaya O.A., Melnikova E.V., Merkulov V.A. Current trends and risks associated with the use of therapies based on genome editing. Biological Products. Prevention, Diagnosis, Treatment. 2023;23(3):247-261. (In Russ.) https://doi.org/10.30895/2221-996X-2023-23-3-247-261

Views: 589


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2221-996X (Print)
ISSN 2619-1156 (Online)