Gene therapy of neurodegenerative diseases: achievements, developments, and clinical implementation challenges
https://doi.org/10.30895/2221-996X-2023-433
Abstract
Neurodegenerative diseases (NDDs) are promising objects for the development of gene therapy products, primarily, due to the possible cause of these diseases (disruption of a gene or several genes), lack of effective therapy, and negative impact on the quality of life of both patients and their families and friends.
The aim of the study was to identify trends and challenges in the development and preclinical and clinical studies of gene therapy products for NDDs and to analyse the international experience of expert assessment of the dossier for Zolgensma®, which received a conditional marketing authorisation.
According to the analysis of the ongoing studies of gene therapy products for NDDs, the following major challenges arise at preclinical and clinical stages. For animal studies, a particular challenge is to select a disease model, a route of administration, and a target for effective gene therapy for polygenic disorders. For clinical trials, problematic aspects are the selection of a control group, the development of inclusion criteria for patients with a genetic variant that is an indication for a gene therapy product and exclusion criteria for patients with antibodies to this gene therapy product, the selection and justifi cation of a safe therapeutic dose since a gene therapy product can be administered to a patient only once, and the complexity of assessing clinical benefi ts of transgene expression in the human body due to the inaccessibility of brain tissue for analysis. Recent years have witnessed a breakthrough in gene therapy with the introduction of Zolgensma® (Novartis) to the world pharmaceutical market to treat children with spinal muscular atrophy type 1. The article analyses the experience of expert assessment of the marketing authorisation dossier for Zolgensma®, which can be used by drug developers bringing new medicines to the market of the Eurasian Economic Union under conditional marketing authorisation, which implies that the benefi ts of immediate patient access to these medicines will exceed the risks associated with incomplete data on their characteristics.
Keywords
About the Authors
E. V. MelnikovaRussian Federation
Ekaterina V. Melnikova, Cand. Sci. (Biol.)
8/2 Petrovsky Blvd, Moscow 127051
V. A. Merkulov
Russian Federation
Vadim A. Merkulov, Dr. Sci. (Med.), Professor
8/2 Petrovsky Blvd, Moscow 127051;
8/2 Trubetskaya St., Moscow 119991
O. V. Merkulova
Russian Federation
Olga V. Merkulova, Cand. Sci. (Med.)
8/2 Petrovsky Blvd, Moscow 127051
References
1. Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M. Gene therapy comes of age. Science. 2018;359(6372):eaan4672. https://doi.org/10.1126/science.aan4672
2. Soldatov AA, Avdeeva ZI, Gorenkov DV, Khantimirova LM, Guseva SG, Merkulov VA. Challenges in development and authorisation of gene therapy products. Biological Products. Prevention, Diagnosis, Treatment. 2022;22(1):6–22.(In Russ.). https://doi.org/10.30895/2221-996X-2022-22-1-6-22
3. Ravi B, Chan-Cortés MH, Sumner CJ. Gene-targeting therapeutics for neurological disease: lessons learned from spinal muscular atrophy. Annu Rev Med. 2021;72:1–14. https://doi.org/10.1146/annurev-med-070119-115459
4. Yamshchikova NG, Stavrovskaya AV, Illarioshkin SN. Some aspects of the development of neurodegenerative diseases. Journal of Asymmetry. 2018;12(4):631–38.(In Russ.). https://doi.org/10.18454/ASY.2018.12.4.030
5. Heemels MT. Neurodegenerative diseases. Nature. 2016;539(7628):179. https://doi.org/10.1038/539179a
6. Hudry E, Vandenberghe LH. Therapeutic AAV gene transfer to the nervous system: a clinical reality. Neuron. 2019;101(5):839–62. https://doi.org/10.1016/j.neuron.2019.02.017
7. Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov. 2019;18(5):358–78. https://doi.org/10.1038/s41573-019-0012-9
8. Lee JH, Wang JH, Chen J, Li F, Edwards TL, Hewitt AW, Liu GS. Gene therapy for visual loss: opportunities and concerns. Prog Retin Eye Res. 2019;68:31–53. https://doi.org/10.1016/j.preteyeres.2018.08.003
9. Sun J, Roy S. Gene-based therapies for neurodegenerative diseases. Nat Neurosci. 2021;24(3):297–311. https://doi.org/10.1038/s41593-020-00778-1
10. Doudna JA. The promise and challenge of therapeutic genome editing. Nature. 2020;578(7794):229–36. https://doi.org/10.1038/s41586-020-1978-5
11. Somia N, Verma IM. Gene therapy: trials and tribulations. Nat Rev Genet. 2000;1(2):91–9. https://doi.org/10.1038/35038533
12. Leone P, Shera D, McPhee SW, Francis JS, Kolodny EH, Bilaniuk LT, et al. Long-term follow-up after gene therapy for Canavan disease. Sci Transl Med. 2012;4(165):165ra163. https://doi.org/10.1126/scitranslmed.3003454
13. Bedbrook CN, Deverman BE, Gradinaru V. Viral strategies for targeting the central and peripheral nervous systems. Annu Rev Neurosci. 2018;41:323–48. https://doi.org/10.1146/annurev-neuro-080317-062048
14. Samaranch L, Salegio EA, San Sebastian W, Kells AP, Bringas JR, Forsayeth J, Bankiewicz KS. Strong cortical and spinal cord transduction after AAV7 and AAV9 delivery into the cerebrospinal fl uid of nonhuman primates. Hum Gene Ther. 2013;24(5):526–32. https://doi.org/10.1089/hum.2013.005
15. Xiang C, Zhang Y, Guo W, Liang XJ. Biomimetic carbon nanotubes for neurological disease therapeutics as inherent medication. Acta Pharm Sin B. 2020;10(2):239–48. https://doi.org/10.1016/j.apsb.2019.11.003
16. Katz ML, Tecedor L, Chen Y, Williamson BG, Lysenko E, Wininger FA, et al. AAV gene transfer delays disease onset in a TPP1-defi cient canine model of the late infantile form of Batten disease. Sci Transl Med. 2015;7(313):313ra180. https://doi.org/10.1126/scitranslmed.aac6191
17. Federici T, Taub JS, Baum GR, Gray SJ, Grieger JC, Matthews KA, et al. Robust spinal motor neuron transduction following intrathecal delivery of AAV9 in pigs. Gene Ther. 2012;19(8):852–9. https://doi.org/10.1038/gt.2011.130
18. Sehara Y, Fujimoto KI, Ikeguchi K, Katakai Y, Ono F, Takino N, et al. Persistent expression of dopamine-synthesizing enzymes 15 years after gene transfer in a primate model of Parkinson’s disease. Hum Gene Ther Clin Dev. 2017;28(2):74–9. https://doi.org/10.1089/humc.2017.010
19. Saraiva J, Nobre RJ, Pereira de Almeida L. Gene therapy for the CNS using AAVs: the impact of systemic delivery by AAV9. J Control Release. 2016;241:94–109. https://doi.org/10.1016/j.jconrel.2016.09.011
20. Hocquemiller M, Giersch L, Audrain M, Parker S, Cartier N. Adeno-associated virus-based gene therapy for CNS diseases. Hum Gene Ther. 2016;27(7):478–96. https://doi.org/10.1089/hum.2016.087
21. Van Dam D, De Deyn PP. Drug discovery in dementia: the role of rodent models. Nat Rev Drug Discov. 2006;5(11):956–70. https://doi.org/10.1038/nrd2075
22. Pype S, Moechars D, Dillen L, Mercken M. Characterization of amyloid β peptides from brain extracts of transgenic mice overexpressing the London mutant of human amyloid precursor protein. J Neurochem. 2003;84(3):602–9. https://doi.org/10.1046/j.1471-4159.2003.01556.x
23. Neha, Sodhi RK, Jaggi AS, Singh N. Animal models of dementia and cognitive dysfunction. Life Sci. 2014;109(2) 73–86. https://doi.org/10.1016/j.lfs.2014.05.017
24. Jankowsky JL, Fadale DJ, Anderson J, Xu GM, Gonzales V, Jenkins NA, et al. Mutant presenilins specifi cally elevate the levels of the 42 residue β-amyloid peptide in vivo: evidence for augmentation of a 42-specifi c γ secretase. Hum Mol Genet. 2004;13(2):159–70. https://doi.org/10.1093/hmg/ddh019
25. Jankowsky JL, Slunt HH, Gonzales V, Savonenko AV, Wen JC, Jenkins NA, et al. Persistent amyloidosis following suppression of Aβ production in a transgenic model of Alzheimer disease. PLoS Med. 2005;2(12):e355. https://doi.org/10.1371/journal.pmed.0020355
26. Giasson BI, Duda JE, Quinn SM, Zhang B, Trojanowski JQ, Lee VM-Y. Neuronal α-synucleinopathy with severe movement disorder in mice expressing A53T human α-synuclein. Neuron. 2002;34(4):521–33. https://doi.org/10.1016/S0896-6273(02)00682-7
27. Gaj T, Ojala DS, Ekman FK, Byrne LC, Limsirichai P, Schaffer DV. In vivo genome editing improves motor function and extends survival in a mouse model of ALS. Sci Adv. 2017;3(12):eaar3952. https://doi.org/10.1126/sciadv.aar3952
28. Duan W, Guo M, Yi L, Liu Y, Li Z, Ma Y, et al. The deletion of mutant SOD1 via CRISPR/Cas9/sgRNA prolongs survival in an amyotrophic lateral sclerosis mouse model. Gene Ther. 2020;27(3-4):157–69. https://doi.org/10.1038/s41434-019-0116-1
29. Lim CKW, Gapinske M, Brooks AK, Woods WS, Powell JE, Zeballos CMA, et al. Treatment of a mouse model of ALS by in vivo base editing. Mol Ther. 2020;28(4):1177–89. https://doi.org/10.1016/j.ymthe.2020.01.005
30. Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, et al. Exon 1 of the HD gene with an expanded CAG repeat is suffi cient to cause a progressive neurological phenotype in transgenic mice. Cell. 1996;87(3):493–506. https://doi.org/10.1016/s0092-8674(00)81369-0
31. Ekman FK, Ojala DS, Adil MM, Lopez PA, Schaffer DV, Gaj T. CRISPR-Cas9-mediated genome editing increases lifespan and improves motor defi cits in a Huntington’s disease mouse model. Mol Ther Nucleic Acids. 2019;17:829–39. https://doi.org/10.1016/j.omtn.2019.07.009
32. Monani UR, Sendtner M, Coovert DD, Parsons DW, Andreassi C, Le TT, et al. The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn-/- mice and results in a mouse with spinal muscular atrophy. Hum Mol Genet. 2000;9(3):333–9. https://doi.org/10.1093/hmg/9.3.333
33. Passini MA, Bu J, Richards AM, Treleaven CM, Sullivan JA, O’Riordan CR, et al. Translational fi delity of intrathecal delivery of self-complementary AAV9-survival motor neuron 1 for spinal muscular atrophy. Hum Gene Ther. 2014;25(7):619–30. https://doi.org/10.1089/hum.2014.011
34. Benkhelifa-Ziyyat S, Besse A, Roda M, Duque S, Astord S, Carcenac R, et al. Intramuscular scAAV9-SMN injection mediates widespread gene delivery to the spinal cord and decreases disease severity in SMA mice. Mol Ther. 2013;21(2):282–90. https://doi.org/10.1038/mt.2012.261
35. Richardson RM, Gimenez F, Salegio EA, Su X, Bringas J, Berger MS, Bankiewicz KS. T2 imaging in monitoring of intraparenchymal real-time convection-enhanced delivery. Neurosurgery. 2011;69(1):154–63. https://doi.org/10.1227/NEU.0b013e318217217e
36. Miyanohara A, Kamizato K, Juhas S, Juhasova J, Navarro M, Marsala S, et al. Potent spinal parenchymal AAV9-mediated gene delivery by subpial injection in adult rats and pigs. Mol Ther Methods Clin Dev. 2016;3:16046. https://doi.org/10.1038/mtm.2016.46
37. Morabito G, Giannelli SG, Ordazzo G, Bido S, Castoldi V, Indrigo M, et al. AAV-PHP.B-mediated global-scale expression in the mouse nervous system enables GBA1 gene therapy for wide protection from synucleinopathy. Mol Ther. 2017;25(12):2727–42. https://doi.org/10.1016/j.ymthe.2017.08.004
38. Coune PG, Schneider BL, Aebischer P. Parkinson’s disease: gene therapies. Cold Spring Harb Perspect Med. 2012;2(4):a009431. https://doi.org/10.1101/cshperspect.a009431
39. Boussicault L, Alves S, Lamazière A, Planques A, Heck N, Moumné L, et al. CYP46A1, the rate-limiting enzyme for cholesterol degradation, is neuroprotective in Huntington’s disease. Brain. 2016;139(Pt3):953–70. https://doi.org/10.1093/brain/awv384
40. Challis RC, Kumar SR, Chan KY, Challis C, Beadle K, Jang MJ, et al. Systemic AAV vectors for widespread and targeted gene delivery in rodents. Nat Protoc. 2019;14(2):379–414. https://doi.org/10.1038/s41596-018-0097-3
41. Deverman BE, Pravdo PL, Simpson BP, Kumar SR, Chan KY, Banerjee A, et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol. 2016;34(2):204–9. https://doi.org/10.1038/nbt.3440
42. Duque S, Joussemet B, Riviere C, Marais T, Dubreil L, Douar AM, et al. Intravenous administration of self-complementary AAV9 enables transgene delivery to adult motor neurons. Mol Ther. 2009;17(7):1187–96. https://doi.org/10.1038/mt.2009.71
43. Xie C, Gong XM, Luo J, Li BL, Song BL. AAV9-NPC1 significantly ameliorates Purkinje cell death and behavioral abnormalities in mouse NPC disease. J Lipid Res. 2017;58(3):512–8. https://doi.org/10.1194/jlr.M071274
44. Vogelbaum MA, Aghi MK. Convection-enhanced delivery for the treatment of glioblastoma. Neuro Oncol. 2015;17(Suppl_2):ii3–8. https://doi.org/10.1093/neuonc/nou354
45. Debinski W, Tatter SB. Convection-enhanced delivery for the treatment of brain tumors. Expert Rev Neurother. 2009;9(10):1519–27. https://doi.org/10.1586/ern.09.99
46. Piguet F, Alves S, Cartier N. Clinical gene therapy for neurodegenerative diseases: past, present, and future. Hum Gene Ther. 2017;28(11):988–1003. https://doi.org/10.1089/hum.2017.160
47. McFarthing K, Prakash N, Simuni T. Clinical trial highlights: 1. Gene therapy for Parkinson’s, 2. Phase 3 study in focus — Intec Pharma’s Accordion Pill, 3. Clinical trials resources. J Parkinson’s Dis. 2019;9(2):251–64. https://doi.org/10.3233/JPD-199001
48. Smith BK, Collins SW, Conlon TJ, Mah CS, Lawson LA, Martin AD, et al. Phase I/II trial of adeno-associated virus-mediated alpha-glucosidase gene therapy to the diaphragm for chronic respiratory failure in Pompe disease: initial safety and ventilatory outcomes. Hum Gene Ther. 2013;24(6):630–40. https://doi.org/10.1089/hum.2012.250
49. Rafi i MS, Tuszynski MH, Thomas RG, Barba D, Brewer JB, Rissman RA, et al. Adeno-associated viral vector (serotype 2)-nerve growth factor for patients with Alzheimer disease: a randomized clinical trial. JAMA Neurol. 2018;75(7):834–41. https://doi.org/10.1001/jamaneurol.2018.0233
50. Worgall S, Sondhi D, Hackett NR, Kosofsky B, Kekatpure MV, Neyzi N, et al. Treatment of late infantile neuronal ceroid lipofuscinosis by CNS administration of a serotype 2 adeno-associated virus expressing CLN2 cDNA. Hum Gene Ther. 2008;19(5):463–74. https://doi.org/10.1089/hum.2008.022
51. Fu H, Meadows AS, Pineda RJ, Kunkler KL, Truxal KV, McBride KL, et al. Differential prevalence of antibodies against adeno-associated virus in healthy children and patients with mucopolysaccharidosis III: perspective for AAV-mediated gene therapy. Hum Gene Ther Clin Dev. 2017;28(4):187–96. https://doi.org/10.1089/humc.2017.109
52. Hinderer C, Katz N, Buza EL, Dyer C, Goode T, Bell P, et al. Severe toxicity in nonhuman primates and piglets following high-dose intravenous administration of an adeno-associated virus vector expressing human SMN. Hum Gene Ther. 2018;29(3):285–98. https://doi.org/10.1089/hum.2018.015
53. Glanzman AM, Mazzone E, Main M, Pelliccioni M, Wood J, Swoboda KJ, et al. The Children’s Hospital of Philadelphia infant test of neuromuscular disorders (CHOP INTEND): test development and reliability. Neuromuscul Disord. 2010;20(3):155–61. https://doi.org/10.1016/j.nmd.2009.11.014
54. Day JW, Mendell JR, Mercuri E, Finkel RS, Strauss KA, Kleyn A, et al. Clinical trial and postmarketing safety of onasemnogene abeparvovec therapy. Drug Saf. 2021;44(10):1109–19. https://doi.org/10.1007/s40264-021-01107-6
55. Day JW, Finkel RS, Chiriboga CA, Connolly AM, Crawford TO, Darras BT, et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy in patients with two copies of SMN2 (STR1VE): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol. 2021;20(4):284–93. https://doi.org/10.1016/S1474-4422(21)00001-6
Supplementary files
Review
For citations:
Melnikova E.V., Merkulov V.A., Merkulova O.V. Gene therapy of neurodegenerative diseases: achievements, developments, and clinical implementation challenges. Biological Products. Prevention, Diagnosis, Treatment. 2023;23(2):127-147. (In Russ.) https://doi.org/10.30895/2221-996X-2023-433