Preview

Biological Products. Prevention, Diagnosis, Treatment

Advanced search

Analysis of pneumococcal serotypes distribution to determine a model composition for a Russian pneumococcal conjugate vaccine

https://doi.org/10.30895/2221-996X-2022-22-2-124-141

Abstract

Diseases caused by Streptococcus pneumoniae, as well as antibiotic resistance of its serotypes, are the leading cause of death amongst children worldwide. To prevent pneumococcal infection, the population is immunised with conjugate vaccines containing different amounts of polysaccharides of certain serotypes. Development of a full-cycle Russian vaccine is vital because the active pharmaceutical ingredients for the vaccines registered in the Russian Federation are produced abroad, and only the final stages of production of vaccines of this group are performed in the territory of the Russian Federation. Considering the phenomenon of serotype replacement associated with the long-term widespread use of pneumococcal conjugate vaccines, it is necessary to carefully select the serotype composition for the new vaccine. The aim of this work was to analyse the serotype distribution of pneumococci in the Russian Federation and other countries in order to select optimal serotypes for the Russian vaccine for human use, taking into account vaccination schedules for each age group. This review presents an analysis of the pneumococcal serotype distribution in the Russian Federation in the pre-vaccination era, as well as after the introduction of routine vaccination. In addition, the review includes data on the serotype distribution in the Eurasian Economic Union countries. The authors described a model composition containing at least sixteen serotypes. It will increase effectiveness of immune protection of the population, providing a more complete coverage of serotypes, considering their prevalence in the Russian Federation. Based on the analysis, the serotype composition for the sixteen-valent pneumococcal conjugate vaccine is proposed for further production and preclinical and clinical trials. A new Russian pneumococcal conjugate vaccine will ensure vaccination of all population groups within the National Immunisation Schedule of the Russian Federation.

About the Authors

V. P. Trukhin
The Saint Petersburg Scientific Research Institute of Vaccines and Serums and the Enterprise for the Production of Bacterial Preparations of Federal Medical and Biologic Agency
Russian Federation

Victor P. Trukhin, Cand. Sci. (Law)

52 Svobody St., Krasnoe Selo, Saint Petersburg 198320



A. E. Evtushenko
The Saint Petersburg Scientific Research Institute of Vaccines and Serums and the Enterprise for the Production of Bacterial Preparations of Federal Medical and Biologic Agency
Russian Federation

Anatoliy E. Evtushenko

52 Svobody St., Krasnoe Selo, Saint Petersburg 198320



E. L. Salimova
The Saint Petersburg Scientific Research Institute of Vaccines and Serums and the Enterprise for the Production of Bacterial Preparations of Federal Medical and Biologic Agency
Russian Federation

Elena L. Salimova, Cand. Sci. (Pharm.)

52 Svobody St., Krasnoe Selo, Saint Petersburg 198320



A. D. Konon
The Saint Petersburg Scientific Research Institute of Vaccines and Serums and the Enterprise for the Production of Bacterial Preparations of Federal Medical and Biologic Agency
Russian Federation

Anastasiya D. Konon, Cand. Sci. (Tech.)

52 Svobody St., Krasnoe Selo, Saint Petersburg 198320



M. R. Khaitov
Institute of Immunology of the Federal Medical-Biological Agency of Russia
Russian Federation

Musa R. Khaitov, Dr. Sci. (Med.), Professor, Corr. Member of RAS

24 Kashirskoe Hwy, Moscow 115478 



V. A. Merkulov
Scientific Centre for Expert Evaluation of Medicinal Products; I. M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Vadim A. Merkulov, Dr. Sci. (Med.), Professor

8/2 Petrovsky Blvd, Moscow 127051
8/2 Trubetskaya St., Moscow 119991



References

1. Baranov AA, Namazova-Baranova LS, Briko NI, Lobzin YUV, Kozlov RS, Kostinov MP, et al. Vaccine prevention of pneumococcal infection in children. Pediatricheskaya farmakologiya = Pediatric pharmacology. 2018;15(3):200–11 (In Russ.) https://doi.org/10.15690/pf.v15i3.1899

2. Henriques-Normark B, Tuomanen EI. The pneumococcus: epidemiology, microbiology, and pathogenesis. Cold Spring Harb Perspect Med. 2013;3(7):a010215. https://doi.org/10.1101/cshperspect.a010215

3. Martynova AV, Pavlova OS, Chulakova OA. Molecular epidemiology peculiarities in forming of antimicrobial resistance of Streptococcus pneumonia strains, isolated in elderly patients. Uspekhi gerontologii = Advances in Gerontology. 2020;33(3):471–8 (In Russ.) https://doi.org/10.34922/AE.2020.33.3.007

4. Makhkamova GT, Shamansurova EA. Susceptibility of pneumococci to antibiotics in children with pneumonia during antibiotic therapy. Meditsina: teoriya i praktika = Medicine: Theory and Practice. 2019;4(S):357 (In Russ.)

5. von Specht M, Gabarrot GG, Mollerach M, Bonofiglio L, Gagetti P, Kaufman S, et al. Resistance to β-lactams in Streptococcus pneumoniae. Rev Argent Microbiol. 2021;53(3):266–71. https://doi.org/10.1016/j.ram.2021.02.007

6. Brandileone MC, Almeida SCG, Bokermann S, Minamisava R, Berezin EN, Harrison LH, et al. Dynamics of antimicrobial resistance of Streptococcus pneumoniae following PCV10 introduction in Brazil: Nationwide surveillance from 2007 to 2019. Vaccine. 2021;39(23):3207–15. https://doi.org/10.1016/j.vaccine.2021.02.063

7. Chen C, Liceras, FC, Flasche S, Sidharta S, Yoong J, Sundaram N, et al. Effect and cost-effectiveness of pneumococcal conjugate vaccination: a global modelling analysis. The Lancet Global Health. 2019;7(1):e58–e67. doi: 10.1016/S2214-109X(18)30422-4

8. Vorobieva S Jensen V, Furberg AS, Slotved HC, Bazhukova T, Haldorsen B, Caugant DA, et al. Epidemiological and molecular characterization of Streptococcus pneumoniae carriage strains in pre-school children in Arkhangelsk, northern European Russia, prior to the introduction of conjugate pneumococcal vaccines. BMC Infect Dis. 2020;20(1):279. https://doi.org/10.1186/s12879-020-04998-5

9. Phillips MT, Warren JL, Givon-Lavi N, Tothpal A, Regev-Yochay G, Dagan R, Weinberger DM. Evaluating post-vaccine expansion patterns of pneumococcal serotypes. Vaccine. 2020;38(49):7756–63. https://doi.org/10.1016/j.vaccine.2020.10.045

10. Koroleva IS, Beloshitsky GV, Mironov KO. Serotype characteristics of pneumococci isolated from patients with pneumococcal meningitis. Voprosy sovremennoi pediatrii = Current Pediatrics. 2012;11(4):122–7 (In Russ.)

11. Mayanskiy NA, Alyabieva NM, Ponomarenko OA, Kulichenko TV, Artemova IV, Lazareva AV, et al. Serotypes and antimicrobial susceptibility of nasopharyngeal pneumococci isolated from children in 2010–2016: a retrospective cohort study. Voprosy sovremennoi pediatrii = Current Pediatrics. 2017;16(5): 413–23 (In Russ.) https://doi.org/10.15690/vsp.v16i5.1806

12. Golubkova AA, Somova AV. Role of Streptococcus pneumoniae in the etiology of community-acquired pneumonia in a large industrial region of the Russian Federation. Tikhookeanskii meditsinskii zhurnal = Pacific Medical Journal. 2018;(3):29–33 (In Russ.) https://doi.org/10.17238/PmJ1609-1175.2018.3.29-33

13. Protasova IN, Martynova GP, Ilyenkova NA, Kutischeva IA, Domracheva SV, Ovchinnikova OP, Sokolovskaya E.S. Etiological role and molecular-genetic features of Streptococcus pneumoniae in children’s infectious diseases. Detskie infektsii = Children Infections. 2020;19(1):7–12 (In Russ.) https://doi.org/10.22627/2072-8107-2020-19-1-7-12

14. Beloshitsky GV, Koroleva IS, Koroleva MA. Landscape of serotypes pneumococcus isolate with pneumococcal meningitis in the Russian Federation. Ehpidemiologiya i vaktsinoprofilaktika = Epidemiology and Vaccinal Prevention. 2015;14(2):19–25 (In Russ.)

15. Mayanskii NA, Alyab'eva NM, Lazareva AV, Katosova LK. Serotype diversity and resistance of pneumococci. Vestnik Rossiiskoi akademii meditsinskikh nauk = Annals of the Russian Academy of Medical Sciences. 2014;69(7-8):38–45 (In Russ.) https://doi.org/10.15690/vramn.v69i7-8.1108

16. Sidorenko SV, Savinova TA, Ilyina EN, Syrochkina MA. Population pattern of pneumococci with lower susceptibility to penicillin and prospects of antipneumococcal vaccination to control antibiotic resistance distribution. Antibiotiki i khimioterapiya = Antibiotics and Chemotherapy. 2011;56(5–6):11–8 (In Russ.)

17. Oganesyan AN, Voropaeva EA, Mel'nikova AA, Urban YuN, Egorova EA, Aleshkin VA. Serotype characterization of streptococcus pneumoniae identified in meningitis cases in several Asian and European countries. Ehpidemiologiya i vaktsinoprofilaktika = Epidemiology and Vaccinal Prevention. 2017;16(3):39–49 (In Russ.)

18. Kozhanova IN. Pneumococcal diseases in children in the Republic of Belarus: epidemiological characteristics. Meditsinskie novosti = Medical News. 2021;2(317):71–6 (In Russ.)

19. Davydov AV, Titov LP, Klyuiko NL, Gurinovich VV. Serotypic characteristic of Streptococcus pneumoniae strains isolated from children with acute otitis media and sinusitis. Zdravookhranenie (Minsk) = Healthcare (Minsk). 2016;3:12–20 (In Russ.)

20. Tarashkevich NV, Shilo RV. Serolandscape of S. pneumoniae strains isolated from patients with pneumococcal infection in Minsk. Molodoi uchenyi = Young Scientist. 2014;18:162–4 (In Russ.)

21. Ramazanova BA, Eralieva LT, Mustafina KK, Koloskova EA. A multicenter study of the prevalence of nasopharyngeal carriage of Streptococcus pneumoniae in selected areas of the Republic of Kazakhstan before and after the onset of antipneumococcal vaccination. Antibiotiki i Khimioterapiya = Antibiotics and Chemotherapy. 2017;62(5-6):35–42 (In Russ.)

22. Sidorenko S, Rennert W, Lobzin Yu, Briko N, Kozlov R, Namazova-Baranova L, et al. Multicenter study of serotype distribution of Streptococcus pneumoniae nasopharyngeal isolates from healthy children in the Russian Federation after introduction of PCV13 into the National Vaccination Calendar. Diagn Microbiol Infect Dis. 2020;96(1):114914. https://doi.org/10.1016/j.diagmicrobio.2019.114914

23. Beloshitsky GV, Koroleva IS. Serotype characteristics of S. pneumoniae in Moscow. Ehpidemiologiya i vaktsinoprofilaktika = Epidemiology and Vaccinal Prevention. 2014;(1):90–7 (In Russ.)

24. Corcoran M, Vickers I, Mereckiene J, Murchan S, Cotter S, Fitzgerald M, et al. The epidemiology of invasive pneumococcal disease in older adults in the post-PCV era. Has there been a herd effect? Epidemiol Infect. 2017;145(11):2390–9. https://doi.org/10.1017/S0950268817001194

25. Kim SH, Chung DR, Song JH, Baek JY, Thamlikitkul V, Wang H, et al. Asian Network for Surveillance of Resistant Pathogens (ANSORP). Changes in serotype distribution and antimicrobial resistance of Streptococcus pneumoniae isolates from adult patients in Asia: emergence of drug-resistant non-vaccine serotypes. Vaccine. 2020;38(38):6065–73. https://doi.org/10.1016/j.vaccine.2019.09.065

26. Mayanskiy N, Kulichenko T, Alyabieva N, Brzhozovskaya E, Ponomarenko O, Savinova T, Lazareva A. Changing serotype distribution and resistance patterns among pediatric nasopharyngeal pneumococci collected in Moscow, 2010–2017. Diagn Microbiol Infect Dis. 2019;94(4):385–90. https://doi.org/10.1016/j.diagmicrobio.2019.02.010

27. Nakano S, Fujisawa T, Ito Y, Chang B, Matsumura Y, Yamamoto M, Suga S, et al. Nationwide surveillance of paediatric invasive and non-invasive pneumococcal disease in Japan after the introduction of the 13-valent conjugated vaccine, 2015–2017. Vaccine. 2020;38(7):1818–24. https://doi.org/10.1016/j.vaccine.2019.12.022

28. Savinova T, Brzhozovskaya E, Shagin D, Mikhaylova Y, Shelenkov A, Yanushevich Y, Mayanskiy N. A multiple drug-resistant Streptococcus pneumoniae of serotype 15A occurring from serotype 19A by capsular switching. Vaccine. 2020;38(33):5114–8. https://doi.org/10.1016/j.vaccine.2020.05.075

29. Yang Baek J, Kim SH, Kang CI, Chung DR, Peck KR, Song JH, et al. Emergence of an extensively drug-resistant (XDR) Streptococcus pneumoniae serotype 15A by capsular switching. Int J Med Microbiol. 2018;308(8):986–9. https://doi.org/10.1016/j.ijmm.2018.08.004

30. Duvvuri VR, Deng X, Teatero S, Memari N, Athey T, Fittipaldi N, Gubbay JB. Population structure and drug resistance patterns of emerging non-PCV-13 Streptococcus pneumoniae serotypes 22F, 15A, and 8 isolated from adults in Ontario, Canada. Infect Genet Evol. 2016;42:1–8. https://doi.org/10.1016/j.meegid.2016.04.007

31. Golubkova AA, Somova AV. The role of pneumococci in the etiology of community-acquired pneumonia, taking into account their serotype diversity. In: Pokrovsky VI, ed. Infectious Diseases in the Modern World: Epidemiology, Diagnosis, Treatment and Prevention. Proceedings of the 12 Annual All-Russian Internet Congress on Infectious Diseases with International Participation. Moscow; 2020. P. 60 (In Russ.)

32. Zhogolev KD, Zhogolev SD, Kulikov PV, Gumilevsky BYu, Sboychakov VB, Kletsko LI, et al. Serotype composition of pneumococci circulating in collectives of military services on the background of application of pneumococcal vaccines. Izvestiya Rossiiskoi Voenno-meditsinskoi akademii = Russian Military Medical Academy Reports. 2020;39(S3-2):74–6 (In Russ.)

33. Bayazitova LT, Tyupkina OF, Tyurin YuA, Shamsutdinov AF, Kadkina VA, Reshetnikova ID, et al. Properties of pneumococci colonizing the nasopharynx of children in Kazan. Infektsiya i immunitet = Infection and Immunity. 2016;6(3):5 (In Russ.)

34. Balsells E, Guillot L, Nair H, Kyaw MH. Serotype distribution of Streptococcus pneumoniae causing invasive disease in children in the post-PCV era: a systematic review and meta-analysis. PLoS One. 2017;12(5):e0177113. https://doi.org/10.1371/journal.pone.0177113

35. Rokney A, Ben-Shimol S, Korenman Z, Porat N, Gorodnitzky Z, Givon-Lavi N, et al. Emergence of Streptococcus pneumoniae serotype 12F after sequential introduction of 7- and 13-valent vaccines, Israel. Emerg Infect Dis. 2018;24(3):453–61. https://doi.org/10.3201/eid2403.170769

36. Nakanishi N, Yonezawa T, Tanaka S, Shirouzu Y, Naito Y, Ozaki A, et al. Assessment of the local clonal spread of Streptococcus pneumoniae serotype 12F caused invasive pneumococcal diseases among children and adults. J Infect Public Health. 2019;12(6):867–72. https://doi.org/10.1016/j.jiph.2019.05.019

37. Davydov AV, Titov LP, Klyuiko NL, Gurinovich VV, Lazarev AV. Antibiotic susceptibility and association with serotypes of Streptococcus pneumoniae strains in children with acute otitis media and acute sinusitis in Belarus. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya = Clinical Microbiology and Antimicrobial Chemotherapy. 2018;20(3):206–15 (In Russ.) https://doi.org/10.36488//cmac.2018.3.206-215

38. Golden AR, Fear T, Baxter M, Adam HJ, Martin I, Demczuk W, et al. Invasive pneumococcal disease caused by serotypes 22F and 33F in Canada: the SAVE study 2011–2018. Diagn Microbiol Infect Dis. 2021;101(2):115447. https://doi.org/10.1016/j.diagmicrobio.2021.115447

39. Amin-Chowdhury Z, Groves N, Sheppard CL, Litt D, Fry NK, Andrews N, Ladhani SN. Invasive pneumococcal disease due to 22F and 33F in England: a tail of two serotypes. Vaccine. 2021;39(14):1997–2004. https://doi.org/10.1016/j.vaccine.2021.02.026

40. Konon AD, Salimova EL, Krasil'nikov IV. Features of the technological stage of conjugation in the production of vaccines for the prevention of infections caused by Haemophilus influenzae type b. Biofarmatsevticheskii zhurnal = Russian Journal of Biopharmaceuticals. 2020;12(4):7–21 (In Russ.)

41. Ivanova AA, Konon AD, Salimova EL, Trukhin VP. Verification of the test procedure for a Haemophilus type b conjugate vaccine by determination of capsular polysaccharide. Farmatsiya = Pharmacy. 2020:69(2):23–8 (In Russ.) https://doi.org/10.29296/25419218-2020-02-04

42. Salimova EL, Konon AD, Truhin VP, Krasilnikov IV. World trends in isolation, identification and characteristics of Haemophilus influenzae type b – the agent of haemophilic infection. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Khimiya. Biologiya. Farmatsiya = Bulletin of the Voronezh State University. Series: Chemistry. Biology. Pharmacy. 2019;(1):87–95 (In Russ.)

43. Salimova EL, Konon AD, Trukhin VP, Krasilnikov IV. Technology of obtaining polyribosylribitol phosphate as an active pharmaceutical ingredient for the production of polysaccharide vaccines. Farmatsiya i farmakologiya = Pharmacy & Pharmacology. 2018;6(1):47–62 (In Russ.) https://doi.org/10.19163/2307-9266-2018-6-1-47-62

44. Salimova EL, Konon AD, Petrovskii SV, Trukhin VP, Krasilnikov IV. Peculiarities of cultivation of haemophilus influenzae type b strains – producers of polyribosylribitol phosphate – the main component of polysaccharide vaccines. Farmatsiya i farmakologiya = Pharmacy & Pharmacology. 2017;5(5):422–41 (In Russ.) https://doi.org/10.19163/2307-9266-2017-5-5-422-441

45. Salimova EL, Konon AD, Trukhin VP, Petrovskii SV, Krasilnikov IV. The infection caused by Haemophilus influenzae type b: the modern vision of vaccine prevention. Voprosy biologicheskoi, meditsinskoi i farmatsevticheskoi khimii = Problems of Biological, Medical and Pharmaceutical Chemistry. 2017;20(10):7–12 (In Russ.)

46. Giannini G, Rappuoli R, Ratti G. The amino-acid sequence of two non-toxic mutants of diphtheria toxin: CRM45 and CRM197. Nucleic Acids Res. 1984;12(10):4063–9. https://doi.org/10.1093/nar/12.10.4063

47. Bröker M, Berti F, Schneider J, Vojtek I. Polysaccharide conjugate vaccine protein carriers as a "neglected valency" - Potential and limitations. Vaccine. 2017;35(25):3286–94. doi: 10.1016/j.vaccine.2017.04.078


Supplementary files

Review

For citations:


Trukhin V.P., Evtushenko A.E., Salimova E.L., Konon A.D., Khaitov M.R., Merkulov V.A. Analysis of pneumococcal serotypes distribution to determine a model composition for a Russian pneumococcal conjugate vaccine. Biological Products. Prevention, Diagnosis, Treatment. 2022;22(2):124-141. (In Russ.) https://doi.org/10.30895/2221-996X-2022-22-2-124-141

Views: 962


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2221-996X (Print)
ISSN 2619-1156 (Online)