Общая характеристика адъювантов и механизм их действия (часть 2)
https://doi.org/10.30895/2221-996X-2021-21-1-20-30
Аннотация
Одна из основных задач здравоохранения в настоящее время заключается в разработке новых вакцин и технологий, которые оптимизируют процесс вакцинации. Растет научный интерес к адъювантам вакцин, усиливающим их иммуногенность. В настоящий момент проводятся многочисленные исследования по разработке вакцин для профилактики COVID-19, в том числе инактивированных и субъединичных вакцин, в состав которых для эффективной индукции иммунного ответа и формирования напряженного иммунитета включаются адъюванты.
Цель работы – систематизация данных литературы по анализу структуры, механизмов действия и стимулирующих свойств адъювантов вакцин (синтетические олигодезоксинуклеотиды, виросомы, полиоксидоний, совидон), а также обобщение данных об эффектах адъювантов, используемых в исследованиях по разработке вакцин против коронавирусов SARS-CoV, MERS-CoV и SARS-CoV-2. Освещены сведения о перспективах усиления стимулирующего действия рассматриваемых адъювантов при их использовании в комбинации с соединениями с иным механизмом действия. Проанализированы выводы по результатам исследований по разработке адъювантных вакцин против вирусов SARS-CoV и MERS-CoV, которые могут быть полезными при выборе адъювантов с оптимальным профилем эффективности и безопасности для разрабатываемых вакцин против SARS-CoV-2. Сделан вывод о том, что понимание механизмов действия адъювантов, опосредующих их стимулирующее влияние на иммунную систему организма, будет способствовать безопасному и эффективному использованию адъювантов для усиления иммуногенности как ранее зарегистрированных, так и новых вакцин.
Ключевые слова
Об авторах
Н. А. АлпатоваРоссия
Алпатова Наталья Александровна, доктор биологических наук
Петровский б-р, д. 8, стр. 2, Москва, 127051
Ж. И. Авдеева
Россия
Авдеева Жанна Ильдаровна, доктор медицинских наук, профессор
Петровский б-р, д. 8, стр. 2, Москва, 127051
С. Л. Лысикова
Россия
Лысикова Светлана Леонидовна, кандидат медицинских наук
Петровский б-р, д. 8, стр. 2, Москва, 127051
О. В. Головинская
Россия
Головинская Ольга Вячеславовна, кандидат медицинских наук
Петровский б-р, д. 8, стр. 2, Москва, 127051
Л. А. Гайдерова
Россия
Гайдерова Лидия Александровна, кандидат медицинских наук
Петровский б-р, д. 8, стр. 2, Москва, 127051
В. П. Бондарев
Россия
Бондарев Владимир Петрович, доктор медицинских наук, профессор
Петровский б-р, д. 8, стр. 2, Москва, 127051
Список литературы
1. Liang Z, Zhu H, Wang X, Jing B, Li Z, Xia X, et al. Adjuvants for coronavirus vaccines. Front Immunol. 2020;11:589833. https://doi.org/10.3389/fimmu.2020.589833
2. Онищенко ГГ, Сизикова ТЕ, Лебедев ВН, Борисевич СВ. Анализ перспективных направлений создания вакцин против COVID-19. БИОпрепараты. Профилактика, диагностика, лечение. 2020;20(4):216–27. https://doi.org/10.30895/2221-996X-2020-20-4-216-227
3. Lau EH, Hsiung CA, Cowling BJ, Chen CH, Ho LM, Tsang T, et al. A comparative epidemiologic analysis of SARS in Hong Kong, Beijing and Taiwan. BMC Infect Dis. 2010;10:50. https://doi.org/10.1186/1471-2334-10-50
4. Половинкина ВС, Марков ЕЮ. Структура и иммуноадъювантные свойства CPG-ДНК. Медицинская иммунология. 2010;12(6):469–76. https://doi.org/10.15789/1563-0625-2010-6-469-476
5. Vollmer J, Krieg AM. Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv Drug Deliv Rev. 2009;61(3):195–204. https://doi.org/10.1016/j.addr.2008.12.008
6. Scheiermann J, Klinman DM. Clinical evaluation of CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases and cancer. Vaccine. 2014;32(48):6377–89. https://doi.org/10.1016/j.vaccine.2014.06.065
7. Campbell JD. Development of the CpG adjuvant 1018: a case study. In: Fox C, ed. Vaccine Adjuvants. Methods in Molecular Biology. V. 1494. New York: Humana Press; 2017. P. 15–27. https://doi.org/10.1007/978-1-4939-6445-1_2
8. Свитич ОА, Лавров ВФ, Кукина ПИ, Скандарян АА, Ганковская ЛВ, Зверев ВВ. Перспективы использования агонистов рецепторов врожденного иммунитета и дефектных вирусных интерферирующих частиц в качестве адъювантов нового поколения. Эпидемиология и вакцинопрофилактика. 2018;17(1):76–86. https://doi.org/10.31631/2073-3046-2018-17-1-76-86
9. Barton GM, Kagan JC. A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nat Rev Immunol. 2009;9(8):535–42. https://doi.org/10.1038/nri2587
10. Klinman DM. Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat Rev Immunol. 2004;4(4):249–59. https://doi.org/10.1038/nri132
11. Bode C, Zhao G, Steinhagen F, Kinjo T, Klinman DM. CpG DNA as a vaccine adjuvant. Expert Rev Vacсines. 2011;10(4):499–511. https://doi.org/10.1586/erv.10.174
12. Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol. 2002;20:709–60. https://doi.org/10.1146/annurev.immunol.20.100301.064842
13. Sparwasser T, Vabulas RM, Villmow B, Lipford GB, Wagner H. Bacterial CpG-DNA activates dendritic cells in vivo: T helper cell-independent cytotoxic T cell responses to soluble proteins. Eur J Immunol. 2000;30(12):3591–7. https://doi.org/10.1002/1521-4141(200012)30:12%3C3591::aidimmu3591%3E3.0.co;2-j
14. Lipford GB, Sparwasser T, Zimmermann S, Heeg K, Wagner H. CpG-DNA-mediated transient lymphadenopathy is associated with a state of Th1 predisposition to antigen-driven responses. J Immunol. 2000;165(3):1228–35. https://doi.org/10.4049/jimmunol.165.3.1228
15. Hyer R, McGuire DK, Xing B, Jackson S, Janssen R. Safety of a two-dose investigational hepatitis B vaccine, HBsAg-1018, using a toll-like receptor 9 agonist adjuvant in adults. Vaccine. 2018;36(19):2604–11. https://doi.org/10.1016/j.vaccine.2018.03.067
16. Ko EJ, Lee Y, Lee YT, Kim YJ, Kim KH, Kang SM. MPL and CpG combination adjuvants promote homologous and heterosubtypic cross protection of inactivated split influenza virus vaccine. Antiviral Res. 2018;156:107–15. https://doi.org/10.1016/j.antiviral.2018.06.004
17. Huckriede A, Bungener L, Stegmann T, Daemen T, Medema J, Palache AM, Wilschut J. The virosome concept for influenza vaccines. Vaccine. 2005;23(Suppl 1):S26–38. https://doi.org/10.1016/j.vaccine.2005.04.026
18. Bron R, Ortiz A, Dijkstra J, Stegmann T, Wilschut J. Preparation, properties, and applications of reconstituted influenza virus envelopes (virosomes). Methods Enzymol. 1993;220:313–31. https://doi.org/10.1016/0076-6879(93)20091-g
19. Wilschut J. Influenza vaccines: the virosome concept. Immunol Lett. 2009;122(2):118–21. https://doi.org/10.1016/j.imlet.2008.11.006
20. Moser C, Müller M, Kaeser MD, Weydemann U, Amacker M. Influenza virosomes as vaccine adjuvant and carrier system. Expert Rev Vaccines. 2013;12(7):779–91. https://doi.org/10.1586/14760584.2013.811195
21. Bovier PA. Epaxal®: a virosomal vaccine to prevent hepatitis A infection. Expert Rev Vaccines. 2008;7(8):1141–50. https://doi.org/10.1586/14760584.7.8.1141
22. Liu H, de Vries-Idema J, Ter Veer W, Wilschut J, Huckriede A. Influenza virosomes supplemented with GPI-0100 adjuvant: a potent vaccine formulation for antigen dose sparing. Med Microbiol Immunol. 2014;203(1):47–55. https://doi.org/10.1007/s00430-013-0313-2
23. Dong W, Bhide Y, Marsman S, Holtrop M, Meijerhof T, de Vries-Idema J, et al. Monophosphoryl lipid A-adjuvanted virosomes with Ni-chelating lipids for attachment of conserved viral proteins as cross-protective influenza vaccine. Biotechnol J. 2018;13(4):e1700645. https://doi.org/10.1002/biot.201700645
24. Kabanov VA. From synthetic polyelectrolytes to polymersubunit vaccines. Pure Appl Chem. 2004;76(9):1659–77. https://doi.org/10.1351/pac200476091659
25. Пинегин БВ, Некрасов АВ, Хаитов РМ. Иммуномодулятор Полиоксидоний: механизмы действия и аспекты клинического применения. Цитокины и воспаление. 2004;3(3):41–7.
26. Alexia C, Cren M, Louis-Plence P, Vo DN, El Ahmadi Y, Dufourcq-Lopez E, et al. Polyoxidonium® activates cytotoxic lymphocyte responses through dendritic cell maturation: clinical effects in breast cancer. Front Immunol. 2019;10:2693. https://doi.org/10.3389/fimmu.2019.02693
27. Powell BS, Andrianov AK, Fusco PC. Polyionic vaccine adjuvants: another look at aluminum salts and polyelectrolytes. Clin Exp Vaccine Res. 2015;4(1):23–45. https://doi.org/10.7774/cevr.2015.4.1.23
28. Лусс ЛВ. Роль Полиоксидония как иммуномодулятора и иммуноадъюванта при профилактике гриппа. Медицинский совет. 2013;(8):50–5.
29. Talayev V, Zaichenko I, Svetlova M, Matveichev A, Babaykina O, Voronina E, Mironov A. Low-dose influenza vaccine Grippol Quadrivalent with adjuvant Polyoxidonium induces a T helper-2 mediated humoral immune response and increases NK cell activity. Vaccine. 2020;38(42):6645–55. https://doi.org/10.1016/j.vaccine.2020.07.053
30. Никифорова АН, Миронов АН. Вакцинопрофилактика и поиск новых адъювантов. Сибирский медицинский журнал (Иркутск). 2011;104(5):15–9.
31. Gupta T, Gupta SK. Potential adjuvants for the development of a SARS-CoV-2 vaccine based on experimental results from similar coronaviruses. Int Immunopharmacol. 2020;86:106717. https://doi.org/10.1016/j.intimp.2020.106717
32. Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe. 2020;27(3):325–8. https://doi.org/10.1016/j.chom.2020.02.001
33. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–3. https://doi.org/10.1038/s41586-020-2012-7
34. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–74. https://doi.org/10.1016/S0140-6736(20)30251-8
35. Du L, Tai W, Zhou Y, Jiang S. Vaccines for the prevention against the threat of MERS-CoV. Expert Rev Vaccines. 2016;15(9):1123–34. https://doi.org/10.1586/14760584.2016.1167603
36. Jiang S, He Y, Liu S. SARS vaccine development. Emerg Infect Dis. 2005;11(7):1016–20. https://doi.org/10.3201/1107.050219
37. Tang L, Zhu Q, Qin E, Yu M, Ding Z, Shi H, et al. Inactivated SARS-CoV vaccine prepared from whole virus induces a high level of neutralizing antibodies in BALB/c mice. DNA Cell Biol. 2004;23(6):391–4. https://doi.org/10.1089/104454904323145272
38. Coleman CM, Liu YV, Mu H, Taylor JK, Massare M, Flyer DC, et al. Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice. Vaccine. 2014;32(26):3169– 74. https://doi.org/10.1016/j.vaccine.2014.04.016
39. Zakhartchouk AN, Sharon C, Satkunarajah M, Auperin T, Viswanathan S, Mutwiri G, et al. Immunogenicity of a receptorbinding domain of SARS coronavirus spike protein in mice: implications for a subunit vaccine. Vaccine. 2007;25(1):136– 43. https://doi.org/10.1016/j.vaccine.2006.06.084
40. Takasuka N, Fujii H, Takahashi Y, Kasai M, Morikawa S, Itamura S, et al. A subcutaneously injected UV-inactivated SARS coronavirus vaccine elicits systemic humoral immunity in mice. Int Immunol. 2004;16(10):1423–30. https://doi.org/10.1093/intimm/dxh143
41. Bolles M, Deming D, Long K, Agnihothram S, Whitmore A, Ferris M, et al. A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge. J Virol. 2011;85(23):12201–15. https://doi.org/10.1128/jvi.06048-11
42. Zhou Z, Post P, Chubet R, Holtz K, McPherson C, Petric M, Cox M. A recombinant baculovirus-expressed S glycoprotein vaccine elicits high titers of SARS-associated coronavirus (SARS-CoV) neutralizing antibodies in mice. Vaccine. 2006;24(17):3624–31. https://doi.org/10.1016/j.vaccine.2006.01.059
43. Agrawal AS, Tao X, Algaissi A, Garron T, Narayanan K, Peng BH, et al. Immunization with inactivated Middle East Respiratory Syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus. Hum Vaccin Immunother. 2016;12(9):2351–6. https://doi.org/10.1080/21 645515.2016.1177688
44. Yasui F, Kai C, Kitabatake M, Inoue S, Yoneda M, Yokochi S, et al. Prior immunization with severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) nucleocapsid protein causes severe pneumonia in mice infected with SARS-CoV. J Immunol. 2008;181(9):6337–48. https://doi.org/10.4049/jimmunol.181.9.6337
45. Gao Q, Bao L, Mao H, Wang L, Xu K, Yang M, et al. Development of an inactivated vaccine for SARSCoV-2. Science. 2020;369(6499):77–81. https://doi.org/10.1101/2020.04.17.046375
46. Chen WH, Tao X, Agrawal AS, Algaissi A, Peng BH, Pollet J, et al. Yeast-expressed SARS-CoV recombinant receptorbinding domain (RBD219-N1) formulated with aluminum hydroxide induces protective immunity and reduces immune enhancement. Vaccine. 2020;38(47):7533–41. https://doi.org/10.1016/j.vaccine.2020.09.061
47. Graham BS. Rapid COVID-19 vaccine development. Science. 2020;368(6494):945–6. https://doi.org/10.1126/science.abb8923
48. Rydyznski Moderbacher C, Ramirez SI, Dan JM, Grifoni A, Hastie KM, Weiskopf D, et al. Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell. 2020;183(4):996–1012. e19. https://doi.org/10.1016/j.cell.2020.09.038
49. Tseng CT, Sbrana E, Iwata-Yoshikawa N, Newman PC, Garron T, Atmar RL, et al. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PLoS One. 2012;7(4):e35421. https://doi.org/10.1371/journal.pone.0035421
50. Harandi AM. Systems analysis of human vaccine adjuvants. Semin Immunol. 2018;39:30–4. https://doi.org/10.1016/j.smim.2018.08.001
51. Shi S, Zhu H, Xia X, Liang Z, Ma X, Sun B. Vaccine adjuvants: Understanding the structure and mechanism of adjuvanticity. Vaccine. 2019;37(24):3167–78. https://doi.org/10.1016/j.vaccine.2019.04.055
52. O’Hagan DT, Ott GS, De Gregorio E, Seubert A. The mechanism of action of MF59 — an innately attractive adjuvant formulation. Vaccine. 2012;30(29):4341–8. https://doi.org/10.1016/j.vaccine.2011.09.061
53. Zhang N, Channappanavar R, Ma C, Wang L, Tang J, Garron T, et al. Identification of an ideal adjuvant for receptorbinding domain-based subunit vaccines against Middle East respiratory syndrome coronavirus. Cell Mol Immunol. 2016;13(2):180–90. https://doi.org/10.1038/cmi.2015.03
54. Kong WP, Xu L, Stadler K, Ulmer JB, Abrignani S, Rappuoli R, Nabel GJ. Modulation of the immune response to the severe acute respiratory syndrome spike glycoprotein by gene-based and inactivated virus immunization. J Virol. 2005;79(22):13915–23. https://doi.org/10.1128/jvi.79.22.13915-13923.2005
55. Tang J, Zhang N, Tao X, Zhao G, Guo Y, Tseng CT, et al. Optimization of antigen dose for a receptor-binding domain-based subunit vaccine against MERS coronavirus. Hum Vaccin Immunother. 2015;11(5):1244–50. https://doi.org/10.1080/21645515.2015.1021527
56. Stadler K, Roberts A, Becker S, Vogel L, Eickmann M, Kolesnikova L, et al. SARS vaccine protective in mice. Emerg Infect Dis. 2005;11(8):1312–4. https://doi.org/10.3201/eid1108.041003
57. Kim YS, Son A, Kim J, Kwon SB, Kim MH, Kim P, et al. Chaperna-Mediated Assembly of ferritin-based Middle East respiratory syndrome-coronavirus nanoparticles. Front Immunol. 2018;9:1093. https://doi.org/10.3389/fimmu.2018.01093
58. Bisht H, Roberts A, Vogel L, Subbarao K, Moss B. Neutralizing antibody and protective immunity to SARS coronavirus infection of mice induced by a soluble recombinant polypeptide containing an N-terminal segment of the spike glycoprotein. Virology. 2005;334(2):160–5. https://doi.org/10.1016/j.virol.2005.01.042
59. Roberts A, Lamirande EW, Vogel L, Baras B, Goossens G, Knott I, et al. Immunogenicity and protective efficacy in mice and hamsters of a β-propiolactone inactivated whole virus SARS-CoV vaccine. Viral Immunol. 2010;23(5):509–19. https://doi.org/10.1089/vim.2010.0028
60. Iwata-Yoshikawa N, Uda A, Suzuki T, Tsunetsugu-Yokota Y, Sato Y, Morikawa S, et al. Effects of Toll-like receptor stimulation on eosinophilic infiltration in lungs of BALB/c mice immunized with UV-inactivated severe acute respiratory syndrome-related coronavirus vaccine. J Virol. 2014;88(15):8597–614. https://doi.org/10.1128/jvi.00983-14
61. Zhao J, Wohlford-Lenane C, Zhao J, Fleming E, Lane TE, McCray PB Jr, Perlman S. Intranasal treatment with poly(I•C) protects aged mice from lethal respiratory virus infections. J Virol. 2012;86(21):11416–24. https://doi.org/10.1128/ jvi.01410-12
62. Steinhagen F, Kinjo T, Bode C, Klinman DM. TLR-based immune adjuvants. Vaccine. 2011;29(17):3341–55. https://doi.org/10.1016/j.vaccine.2010.08.002
63. Channappanavar R, Fett C, Zhao J, Meyerholz DK, Perlman S. Virus-specific memory CD8 T cells provide substantial protection from lethal severe acute respiratory syndrome coronavirus infection. J Virol. 2014;88(19):11034–44. https://doi.org/10.1128/jvi.01505-14
64. Zhao K, Wang H, Wu C. The immune responses of HLAA*0201 restricted SARS-CoV S peptide-specific CD8+ T cells are augmented in varying degrees by CpG ODN, PolyI:C and R848. Vaccine. 2011;29(38):6670–8. https://doi.org/10.1016/j.vaccine.2011.06.100
65. Duthie MS, Windish HP, Fox CB, Reed SG. Use of defined TLR ligands as adjuvants within human vaccines. Immunol Rev. 2011;239(1):178–96. https://doi.org/10.1111/j.1600-065x.2010.00978.x
66. Gai W, Zou W, Lei L, Luo J, Tu H, Zhang Y, et al. Effects of different immunization protocols and adjuvant on antibody responses to inactivated SARS-CoV vaccine. Viral Immunol. 2008;21(1):27–37. https://doi.org/10.1089/vim.2007.0079
67. Weeratna RD, Brazolot Millan CL, McCluskie MJ, Davis HL. CpG ODN can re-direct the Th bias of established Th2 immune responses in adult and young mice. FEMS Immunol Med Microbiol. 2001;32(1):65–71. https://doi.org/10.1111/j.1574-695X.2001.tb00535.x
68. Jiaming L, Yanfeng Y, Yao D, Yawei H, Linlin B, Baoying H, et al. The recombinant N-terminal domain of spike proteins is a potential vaccine against Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Vaccine. 2017;35(1):10– 8. https://doi.org/10.1016/j.vaccine.2016.11.064
69. Lan J, Deng Y, Chen H, Lu G, Wang W, Guo X, et al. Tailoring subunit vaccine immunity with adjuvant combinations and delivery routes using the Middle East respiratory coronavirus (MERS-CoV) receptor-binding domain as an antigen. PLoS One. 2014;9(11):e112602. https://doi.org/10.1371/journal.pone.0112602
70. Honda-Okubo Y, Barnard D, Ong CH, Peng BH, Tseng CT, Petrovsky N. severe acute respiratory syndrome-associated coronavirus vaccines formulated with delta inulin adjuvants provide enhanced protection while ameliorating lung eosinophilic immunopathology. J Virol. 2015;89(6):2995–3007. https://doi.org/10.1128/jvi.02980-14
71. Thanh Le T, Andreadakis Z, Kumar A, Gómez Román R, Tollefsen S, Saville M, Mayhew S. The COVID-19 vaccine development landscape. Nat Rev Drug Discov. 2020;19(5):305–6. https://doi.org/10.1038/d41573-020-00073-5
72. Iwasaki A, Yang Y. The potential danger of suboptimal antibody responses in COVID-19. Nat Rev Immunol. 2020;20(6):339– 41. https://doi.org/10.1038/s41577-020-0321-6
73. Wang Q, Zhang L, Kuwahara K, Li L, Liu Z, Li T, et al. Immunodominant SARS coronavirus epitopes in humans elicited both enhancing and neutralizing effects on infection in non-human primates. ACS Infect Dis. 2016;2(5):361–76. https://doi.org/10.1021/acsinfecdis.6b00006
74. Wan Y, Shang J, Sun S, Tai W, Chen J, Geng Q, et al. Molecular mechanism for antibody-dependent enhancement of coronavirus entry. J Virol. 2020;94(5):e02015–19. https://doi.org/10.1128/JVI.02015-19
75. Heaton PM. The Covid-19 vaccine-development multiverse. N Engl J Med. 2020;383(20):1986–8. https://doi.org/10.1056/nejme2025111
76. Kuo TY, Lin MY, Coffman RL, Campbell JD, Traquina P, Lin YJ, et al. Development of CpG-adjuvanted stable prefusion SARS-CoV-2 spike antigen as a subunit vaccine against COVID-19. Sci Rep. 2020;10(1):20085. https://doi.org/10.1038/s41598-020-77077-z
77. V’kovski P, Gultom M, Kelly J, Steiner S, Russeil J, Mangeat B, et al. Disparate temperature-dependent virus — host dynamics for SARS-CoV-2 and SARS-CoV in the human respiratory epithelium. BioRxiv. 2020.04.27.062315. https://doi.org/10.1101/2020.04.27.062315
78. Uematsu S, Fujimoto K, Jang MH, Yang BG, Jung YJ, Nishiyama M, et al. Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Tolllike receptor 5. Nat Immunol. 2008;9(7):769–76. https://doi.org/10.1038/ni.1622
Дополнительные файлы
Рецензия
Для цитирования:
Алпатова Н.А., Авдеева Ж.И., Лысикова С.Л., Головинская О.В., Гайдерова Л.А., Бондарев В.П. Общая характеристика адъювантов и механизм их действия (часть 2). БИОпрепараты. Профилактика, диагностика, лечение. 2021;21(1):20-30. https://doi.org/10.30895/2221-996X-2021-21-1-20-30
For citation:
Alpatova N.А., Avdeeva Z.I., Lysikova S.L., Golovinskaya O.V., Gayderova L.A., Bondarev V.P. General characteristics of adjuvants and their mechanisms of action (part 2). BIOpreparations. Prevention, Diagnosis, Treatment. 2021;21(1):20-30. (In Russ.) https://doi.org/10.30895/2221-996X-2021-21-1-20-30