Лекарственные препараты фактора VIII, актуальные вопросы разработки, клинического исследования и применения (часть 1)
https://doi.org/10.30895/2221-996X-2021-21-1-39-49
Аннотация
По информации Всемирной федерации гемофилии, в настоящее время в мире насчитывается около 400 тыс. пациентов с заболеванием гемофилией. Тяжелые клинические проявления заболевания, связанные с генетически детерминированным дефицитом активности фактора свертывания крови, требуют проведения постоянной заместительной терапии препаратами свертывания крови. Длительное применение препаратов белковой природы часто приводит к формированию специфических антител, что вызывает снижение или потерю эффективности лекарственного препарата или является причиной выраженных побочных реакций, вплоть до анафилаксии. В связи с этим актуальным является поиск новых оптимальных подходов к способам лечения гемофилии, что требует разработки новых лекарственных препаратов факторов свертывания крови и совершенствования технологии производства ранее зарегистрированных препаратов, а так и использования препаратов «нефакторной» терапии. Цель работы – представление результатов анализа актуальных вопросов, касающихся разработки и особенностей плазменных и рекомбинантных лекарственных препаратов фактора VIII, новых подходов к лечению гемофилии А, в том числе и использования препаратов «нефакторной» терапии. В обзоре представлены обобщенные современные данные об этиологии, клинических проявлениях, осложнениях, связанных с проводимой терапией гемофилии А. Приведены сведения о лекарственных препаратах факторов свертывания крови (плазменных и рекомбинантных), используемых в качестве заместительной терапии при указанной патологии. Отражены сведения о перспективных разработках новых лекарственных препаратов, базирующихся на современных достижениях биотехнологии. Имеющиеся разработки открывают перспективы успешного применения таких препаратов в клинической практике.
Об авторах
Ж. И. АвдееваРоссия
Авдеева Жанна Ильдаровна, доктор медицинских наук, профессор
Петровский б-р, д. 8, стр. 2, Москва, 127051
А. А. Солдатов
Россия
Солдатов Александр Алексеевич, доктор медицинских наук
Петровский б-р, д. 8, стр. 2, Москва, 127051
В. П. Бондарев
Россия
Бондарев Владимир Петрович, доктор медицинских наук, профессор
Петровский б-р, д. 8, стр. 2, Москва, 127051
В. Д. Мосягин
Россия
Мосягин Вячеслав Дмитриевич, доктор медицинских наук, профессор
Петровский б-р, д. 8, стр. 2, Москва, 127051
В. А. Меркулов
Россия
Меркулов Вадим Анатольевич, доктор медицинских наук, профессор
Петровский б-р, д. 8, стр. 2, Москва, 127051
Трубецкая ул., д. 8, стр. 2, Москва, 119991
Список литературы
1. Волкова СА, Боровков НН. Основы клинической гематологии. Учебное пособие. Н. Новгород: НижГМА; 2013.
2. Бломбек М, Антович Й, ред. Нарушения свертывания крови. Практические рекомендации по диагностике и лечению. М.: Медицинская литература; 2014.
3. Зозуля НИ, Свирин ПВ. Диагностика и лечение гемофилии. Национальные клинические рекомендации. М.: Национальное гематологическое общество; 2014.
4. Сараева НО. Гематология. Учебное пособие. Изд. 2-е, перераб. Иркутск: ИГМУ; 2015.
5. Орлова НА, Ковнир СВ, Воробьев ИИ, Габибов АГ, Воробьев АИ. Фактор свертывания крови VIII — от эволюции к терапии. Acta Naturae. 2013;5(2):19–39. https://doi.org/10.32607/20758251-2013-5-2-19-39
6. Зозуля НИ, Чернов ВМ, Тарасова ИС, Румянцев АГ. Нерешенные вопросы оказания медицинской помощи пациентам с ингибиторной формой гемофилии в России. Российский журнал детской гематологии и онкологии. 2019;6(2):48–53. https://doi.org/10.21682/2311-1267-2019-6-2-48-53
7. Mannucci PM, Tuddenham EG. The hemophilias — from royal genes to gene therapy. N Engl J Med. 2001;344(23):1773– 9. https://doi.org/10.1056/nejm200106073442307
8. Colman RW, Hirsh J, Marder VJ, Clowes AW, George JN, eds. Hemostasis and thrombosis: basic principles and clinical practice. 4th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2001.
9. DeLoughery TG, ed. Hemostasis and thrombosis. 2nd ed. Georgetown, TX: Landes Bioscience; 2019. https://www.springer.com/us/book/9783030193294
10. Авдеева ЖИ, Солдатов АА, Бондарев ВП, Меркулов ВА. Аспекты клинических исследований препаратов для лечения гемофилии. БИОпрепараты. Профилактика, диагностика, лечение. 2020;20(1):30– 41. https://doi.org/10.30895/2221-996X-2020-20-1-30-41
11. Pipe SW, Montgomery RR, Pratt KP, Lenting PJ, Lillicrap D. Life in the shadow of a dominant partner: the FVIII-VWF association and its clinical implications for hemophilia A. Blood. 2016;128(16):2007–16. https://doi.org/10.1182/ blood-2016-04-713289
12. Lenting PJ, Van Schooten CJ, Denis CV. Clearance mechanisms of von Willebrand factor and factor VIII. J Thromb Haemost. 2007;5(7):1353–60. https://doi.org/10.1111/j.1538-7836.2007.02572.x
13. Dasgupta S, Repessé Y, Bayry J, Navarrete AM, Wootla B, Delignat S, et al. VWF protects FVIII from endocytosis by dendritic cells and subsequent presentation to immune effectors. Blood. 2007;109(2):610–2. https://doi.org/10.1182/blood-2006-05-022756
14. Saenko EL, Ananyeva NM. Receptor-mediated clearance of factor VIII: implications for pharmacokinetic studies in individuals with haemophilia. Haemophilia. 2006;12(Suppl 4):15– 22. https://doi.org/10.1111/j.1365-2516.2006.01329.x
15. Mannucci PM. Viral safety of coagulation factor concentrates: memoirs from an insider. J Thromb Haemost. 2018;16(4):630–3. https://doi.org/10.1111/jth.13963
16. Русанов ВМ, Левин И. Лечебные препараты крови. М.: Медпрактика-М; 2004.
17. Зубкова НВ. Обеспечение инфекционной безопасности препаратов из плазмы крови доноров. Гематология и трансфузиология. 2014;59(2):44–9.
18. Velthove KJ, Over J, Abbink K, Janssen MP. Viral safety of human plasma-derived medicinal products: impact of regulation requirements. Transfus Med Rev. 2013;27(3):179–83. https://doi.org/10.1016/j.tmrv.2013.05.002
19. Hay CR, Palmer BP, Chalmers EA, Hart DP, Liesner R, Rangarajan S, et al. The incidence of factor VIII inhibitors in severe haemophilia A following a major switch from fulllength to B-domain-deleted factor VIII: a prospective cohort comparison. Haemophilia. 2015;21(2):219–26. https://doi.org/10.1111/hae.12563
20. Gringeri A, Tagliaferri A, Tagariello G, Morfini M, Santagostino E, Mannucci P. Efficacy and inhibitor development in previously treated patients with haemophilia A switched to a B domain-deleted recombinant factor VIII. Br J Haematol. 2004;126(3):398–404. https://doi.org/10.1111/j.1365-2141.2004.05058.x
21. Franchini M, Mannucci PM. Direct oral anticoagulants and venous thromboembolism. Eur Respir Rev. 2016;25(141):295– 302. https://doi.org/10.1183/16000617.0025-2016
22. Arruda VR, Doshi BS, Samelson-Jones BJ. Novel approaches to hemophilia therapy: successes and challenges. Blood. 2017;130(21):2251–6. https://doi.org/10.1182/blood-2017-08-742312
23. Shima M, Hanabusa H, Taki M, Matsushita T, Sato T, Fukutake K, et al. Factor VIII-mimetic function of humanized bispecific antibody in hemophilia A. N Engl J Med. 2016;374(21):2044–53. https://doi.org/10.1056/nejmoa1511769
24. Sehgal A, Barros S, Ivanciu L, Cooley B, Qin J, Racie T, et al. An RNAi therapeutic targeting antithrombin to rebalance the coagulation system and promote hemostasis in hemophilia. Nat Med. 2015;21(5):492–7. https://doi.org/10.1038/nm.3847
25. Chowdary P, Lethagen S, Friedrich U, Brand B, Hay C, Abdul Karim F, et al. Safety and pharmacokinetics of anti-TFPI antibody (concizumab) in healthy volunteers and patients with hemophilia: a randomized first human dose trial. J Thromb Haemost. 2015;13(5):743–54. https://doi.org/10.1111/jth.12864
26. Fischer K, Pendu R, van Schooten CJ, van Dijk K, Denis CV, van den Berg HM, Lenting PJ. Models for prediction of factor VIII half-life in severe haemophiliacs: distinct approaches for blood group O and non-O patients. PLoS One. 2009;4(8):e6745. https://doi.org/10.1371/journal.pone.0006745
27. Fijnvandraat K, Peters M, ten Cate JW. Inter-individual variation in half-life of infused recombinant factor VIII is related to pre-infusion von Willebrand factor antigen levels. Br J Haematol. 1995;91(2):474–6. https://doi.org/10.1111/j.1365-2141.1995.tb05325.x
28. Hacker MR, Geraghty S, Manco-Johnson M. Barriers to compliance with prophylaxis therapy in haemophilia. Haemophilia. 2001;7(4):392–6.
29. De Moerloose P, Urbancik W, Van Den Berg HM, Richards M. A survey of adherence to haemophilia therapy in six European countries: results and recommendations. Haemophilia. 2008;14(5):931–8. https://doi.org/10.1111/j.1365-2516.2008.01843.x
30. Journeycake JM, Buchanan GR. Catheter-related deep venous thrombosis and other catheter complications in children with cancer. J Clin Oncol. 2006;24(28):4575–80. https://doi.org/10.1200/jco.2005.05.5343
31. Mahdi AJ, Obaji SG, Collins PW. Role of enhanced halflife factor VIII and IX in the treatment of haemophilia. Br J Haematol. 2015;169(6):768–76. https://doi.org/10.1111/bjh.13360
32. Strohl WR. Fusion proteins for half-life extension of biologics as a strategy to make biobetters. BioDrugs. 2015;29(4):215– 39. https://doi.org/10.1007/s40259-015-0133-6
33. Baldo BA. Chimeric fusion proteins used for therapy: indications, mechanisms, and safety. Drug Saf. 2015;38(5):455– 79. https://doi.org/10.1007/s40264-015-0285-9
34. Ivens IA, Baumann A, McDonald TA, Humphries TJ, Michaels LA, Mathew P. PEGylated therapeutic proteins for haemophilia treatment: a review for haemophilia caregivers. Haemophilia. 2013;19(1):11–20. https://doi.org/10.1111/j.1365-2516.2012.02931.x
35. Konkle BA, Stasyshyn O, Chowdary P, Bevan DH, Mant T, Shima M, et al. Pegylated, full-length, recombinant factor VIII for prophylactic and on-demand treatment of severe hemophilia A. Blood. 2015;126(9):1078–85. https://doi. org/10.1182/blood-2015-03-630897
36. Tiede A, Brand B, Fischer R, Kavakli K, Lentz SR, Matsushita T, et al. Enhancing the pharmacokinetic properties of recombinant factor VIII: first-in-human trial of glycoPEGylated recombinant factor VIII in patients with hemophilia A. J Thromb Haemost. 2013;11(4):670–8. https://doi.org/10.1111/jth.12161
37. Turecek PL, Bossard MJ, Graninger M, Gritsch H, Höllriegl W, Kaliwoda M, et al. BAX 855, a PEGylated rFVIII product with prolonged half-life. Development, functional and structural characterisation. Hamostaseologie. 2012;32(Suppl 1):S29–38.
38. Coyle TE, Reding MT, Lin JC, Michaels LA, Shah A, Powell J. Phase I study of BAY 94-9027, a PEGylated B-domain-deleted recombinant factor VIII with an extended half-life, in subjects with hemophilia A. J Thromb Haemost. 2014;12(4):488–96. https://doi.org/10.1111/jth.12506
39. Mahlangu J, Powell JS, Ragni MV, Chowdary P, Josephson NC, Pabinger I, et al. Phase 3 study of recombinant factor VIII Fc fusion protein in severe hemophilia A. Blood. 2014;123(3):317–25. https://doi.org/10.1182/blood-2013-10-529974
40. Shapiro AD, Ragni MV, Kulkarni R, Oldenberg J, Srivastava A, Quon DV, et al. Recombinant factor VIII Fc fusion protein: extended-interval dosing maintains low bleeding rates and correlates with von Willebrand factor levels. J Thromb Haemost. 2014;12(11):1788–800. https://doi.org/10.1111/jth.12723
41. Peters RT, Toby G, Lu Q, Liu T, Kulman JD, Low SC, et al. Biochemical and functional characterization of a recombinant monomeric factor VIII-Fc fusion protein. J Thromb Haemost. 2013;11(1):132–41. https://doi.org/10.1111/jth.12076
42. Powell JS, Josephson NC, Quon D, Ragni MV, Cheng G, Li E, et al. Safety and prolonged activity of recombinant factor VIII Fc fusion protein in hemophilia A patients. Blood. 2012;119(13):3031–7. https://doi.org/10.1182/blood-2011-09-382846
43. Young G, Mahlangu JN, Kulkarni R, Nolan B, Liesner R, Pasi J, et al. Safety, efficacy, and pharmacokinetics of recombinant factor VIII Fc fusion protein (rFVIIIFc) in previously-treated children with severe hemophilia A (Kids-A-LONG). Blood. 2014;124(21):1494. https://doi.org/10.1182/blood. V124.21.1494.1494
44. Ezban M, Vad K, Kjalke M. Turoctocog alfa (NovoEight®) — from design to clinical proof of concept. Eur J Haematol. 2014;93(5):369–76. https://doi.org/10.1111/ejh.12366
45. Zollner SB, Raquet E, Müller-Cohrs J, Metzner HJ, Weimer T, Pragst I, et al. Preclinical efficacy and safety of rVIIISingleChain (CSL627), a novel recombinant single-chain factor VIII. Thromb Res. 2013;132(2):280–7. https://doi. org/10.1016/j.thromres.2013.06.017
46. Zollner S, Raquet E, Claar P, Müller-Cohrs J, Metzner HJ, Weimer T, et al. Non-clinical pharmacokinetics and pharmacodynamics of rVIII-SingleChain, a novel recombinant single-chain factor VIII. Thromb Res. 2014;134(1):125–31. https://doi.org/10.1016/j.thromres.2014.03.028
47. Kitazawa T, Igawa T, Sampei Z, Muto A, Kojima T, Soeda T, et al. A bispecific antibody to factors IXa and X restores factor VIII hemostatic activity in a hemophilia A model. Nat Med. 2012;18(10):1570–4. https://doi.org/10.1038/nm.2942
48. Lenting PJ, Denis CV, Christophe OD. Emicizumab, a bispecific antibody recognizing coagulation factors IX and X: how does it actually compare to factor VIII? Blood. 2017;130(23):2463–8. https://doi.org/10.1182/blood-2017-08-801662
49. Kitazawa T, Esaki K, Tachibana T, Ishii S, Soeda T, Muto A, et al. Factor VIIIa-mimetic cofactor activity of a bispecific antibody to factors IX/IXa and X/Xa, emicizumab, depends on its ability to bridge the antigens. J Thromb Haemost. 2017;117(7):1348–57. https://doi.org/10.1160/th17-01-0030
50. Kitazawa T, Shima M. Emicizumab, a humanized bispecific antibody to coagulation factors IXa and X with a factor VIIIacofactor activity. Int J Hematol. 2020;111(1):20–30. https://doi.org/10.1007/s12185-018-2545-9
51. Yada K, Nogami K. Novel insights and new developments regarding coagulation revealed by studies of the anti-factor IXa (activated factor IX)/factor X bispecific antibody, emicizumab. Arterioscler Thromb Vasc Biol. 2020;40(5):1148–54. https://doi.org/10.1161/atvbaha.120.312919
52. Muto A, Yoshihashi K, Takeda M, Kitazawa T, Soeda T, Igawa T, et al. Anti-factor IXa/X bispecific antibody (ACE910): hemostatic potency against ongoing bleeds in a hemophilia A model and the possibility of routine supplementation. J Thromb Haemost. 2014;12(2):206–13.
53. Lippi G, Favaloro EJ. Emicizumab (ACE910): clinical background and laboratory assessment of hemophilia A. Adv Clin Chem. 2019;88:151–67. https://doi.org/10.1016/bs.acc.2018.10.003
54. Oldenburg J, Mahlangu JN, Kim B, Schmitt C, Callaghan MU, Young G, et al. Emicizumab prophylaxis in hemophilia A with inhibitors. N Engl J Med. 2017;377(9):809–18. https://doi.org/10.1056/nejmoa1703068
55. Young G, Liesner R, Chang T, Sidonio R, Oldenburg J, Jiménez-Yuste V, et al. A multicenter, open-label, phase 3 study of emicizumab prophylaxis in children with hemophilia A with inhibitors. Blood. 2019;134(24):2127–38. https://doi.org/10.1182/blood.2019001869
56. Mahlangu J, Oldenburg J, Paz-Priel I, Negrier C, Niggli M, Mancuso ME, et al. Emicizumab prophylaxis in patients who have hemophilia A without inhibitors. N Engl J Med. 2018;379(9):811–22. https://doi.org/10.1056/nejmoa1803550
57. Pipe SW, Shima M, Lehle M, Shapiro A, Chebon S, Fukutake K, et al. Efficacy, safety, and pharmacokinetics of emicizumab prophylaxis given every 4 weeks in people with haemophilia A (HAVEN 4): a multicentre, open-label, non-randomised phase 3 study. Lancet Haematol. 2019;6(6):e295– 305. https://doi.org/10.1016/s2352-3026(19)30054-7
58. Shima M, Nogami K, Nagami S, Yoshida S, Yoneyama K, Ishiguro A, et al. A multicentre, open-label study of emicizumab given every 2 or 4 weeks in children with severe haemophilia A without inhibitors. Haemophilia. 2019;25(6):979– 87. https://doi.org/10.1111/hae.13848
59. Uchida N, Sambe T, Yoneyama K. A first-in-human phase 1 study of ACE910, a novel factor VIII-mimetic bispecific antibody, in healthy subjects. Blood. 2016;127(13):1633–41. https://doi.org/10.1182/blood-2015-06-650226
60. Shima M. Bispecific antibodies and advances in non-gene therapy options in hemophilia. Res Pract Thromb Haemost. 2020;4(4):446–54. https://doi.org/10.1002/rth2.12337
61. Lenting PJ, Denis CV, Christophe OD. Emicizumab, a bispecific antibody recognizing coagulation factors IX and X: how does it actually compare to factor VIII. Blood. 2017; 130(23):2463–8. https://doi.org/10.1182/blood-2017-08-801662
62. Peterson JA, Maroney SA, Mast AE. Targeting TFPI for hemophilia treatment. Thromb Res. 2016;141(Suppl 2):S28– 30. https://doi.org/10.1016/s0049-3848(16)30359-0
63. Chowdary P. Anti-tissue factor pathway inhibitor (TFPI) therapy: a novel approach to the treatment of haemophilia. Int J Hematol. 2020;111(1):42–50. https://doi.org/10.1007/s12185-018-2548-6
64. Eichler H, Angchaisuksiri P, Kavakli K, Knoebl P, Windyga J, Jiménez-Yuste V, et al. A randomized trial of safety, pharmacokinetics and pharmacodynamics of concizumab in people with hemophilia A. J Thromb Haemost. 2018;16(11):2184– 95. https://doi.org/10.1111/jth.14272
65. Chowdary P. Inhibition of tissue factor pathway inhibitor (TFPI) as a treatment for haemophilia: rationale with focus on concizumab. Drugs. 2018;78(9):881–90. https://doi.org/10.1007/s40265-018-0922-6
66. Dockal M, Hartmann R, Fries M, Thomassen MC, Heinzmann A, Ehrlich H, et al. Small peptides blocking inhibition of factor Xa and tissue factor-factor VIIa by tissue factor pathway inhibitor (TFPI). J Biol Chem. 2014;289(3):1732–41. https://doi.org/10.1074/jbc.M113.533836
67. Waters EK, Genga RM, Schwartz MC, Nelson JA, Schaub RG, Olson KA, et al. Aptamer ARC19499 mediates a procoagulant hemostatic effect by inhibiting tissue factor pathway inhibitor. Blood. 2011;117(20):5514–22. https://doi.org/10.1182/blood-2010-10-311936
68. Parunov LA, Soshitova NP, Fadeeva OA, Balandina AN, Kopylov KG, Kumskova MA, et al. Drug-drug interaction of the anti-TFPI aptamer BAX499 and factor VIII: studies of spatial dynamics of fibrin clot formation in hemophilia A. Thromb Res. 2014;133(1):112–9. https://doi.org/10.1016/j.thromres.2013.10.036
69. Rangarajan S, Walsh L, Lester W, Perry D, Madan B, Laffan M, et al. AAV5-factor VIII gene transfer in severe hemophilia A. N Engl J Med. 2017;377(26):2519–30. https://doi.org/10.1056/nejmoa1708483
70. Pasi J, Rangarajan S, Mitchell N, Lester W, Laffan M, Madan B, et al. First-in-human evidence of durable therapeutic efficacy and safety of AAV gene therapy over 3-years with Valoctocogene Roxaparvotec for severe haemophilia A (BMN 270-201 Study). J Thromb Haemost. LB 01.2. 2019.
71. Shima M. Current progress and future direction in the treatment for hemophilia. Int J Hematol. 2020;111:16–9. https:// doi.org/10.1007/s12185-019-02786-9
72. Machin N, Ragni MV. An investigational RNAi therapeutic targeting antithrombin for the treatment of hemophilia A and B. J Blood Med. 2018;9:135–40. https://doi.org/10.2147/jbm.s159297
73. Hu B, Zhong L, Weng Y, Peng L, Huang Y, Zhao Y, et al. Therapeutic siRNA: state of the art. Sig Transduct Target Ther. 2020;5(1):101. https://doi.org/10.1038/s41392-020-0207-x
Дополнительные файлы
Рецензия
Для цитирования:
Авдеева Ж.И., Солдатов А.А., Бондарев В.П., Мосягин В.Д., Меркулов В.А. Лекарственные препараты фактора VIII, актуальные вопросы разработки, клинического исследования и применения (часть 1). БИОпрепараты. Профилактика, диагностика, лечение. 2021;21(1):39-49. https://doi.org/10.30895/2221-996X-2021-21-1-39-49
For citation:
Avdeeva Z.I., Soldatov A.A., Bondarev V.P., Mosyagin V.D., Merkulov V.A. Factor VIII products: key aspects of development, clinical research and use (part 1). BIOpreparations. Prevention, Diagnosis, Treatment. 2021;21(1):39-49. (In Russ.) https://doi.org/10.30895/2221-996X-2021-21-1-39-49