Preview

БИОпрепараты. Профилактика, диагностика, лечение

Расширенный поиск

Применение биомедицинских клеточных продуктов для лечения онкологических заболеваний

https://doi.org/10.30895/2221-996X-2019-19-4-206-214

Полный текст:

Аннотация

В настоящее время онкологические заболевания продолжают оставаться одной из причин смертности населения. Стандартные методы терапии, включая лучевую и химиотерапию, имеют ограниченную эффективность. В связи с этим разработка принципиально новых методов терапии онкологических заболеваний является актуальной задачей. Перспективным и многообещающим подходом считается лечение онкологии с помощью биомедицинских клеточных продуктов (БМКП), к которым можно отнести адоптивную клеточную терапию и терапию вакцинами на основе дендритных клеток. Цель работы — обзор современных представлений о принципах терапии, а также имеющегося клинического опыта применения клеточных продуктов для лечения онкологических заболеваний. В работе представлены данные клинического применения опухоль-инфильтрирующих лимфоцитов (TIL-терапия), генетически модифицированных T-клеток, экспрессирующих специфичные к опухолевым антигенам рецепторы (TCR/CAR-T-терапия), а также дендритно-клеточных вакцин. Применение ex vivo модифицированных клеток иммунной системы человека является новым подходом и имеет большие перспективы для лечения онкологических заболеваний. Представленные основные направления адоптивной клеточной терапии, базирующиеся на использовании генетически модифицированных Т-лимфоцитов, имеют различные преимущества и недостатки. В работе рассмотрены способы получения БМКП, приведены данные по эффективности применения адоптивной клеточной терапии и вакцин на основе дендритных клеток. Отдельное внимание уделено проблемам, связанным с безопасностью каждого метода терапии, а также другим факторам, ограничивающим применение данных терапевтических подходов в клинической практике. Ожидается, что дальнейшие исследования будут направлены на повышение эффективности и снижение побочных реакций при терапии БМКП.

Об авторах

Е. А. Устюгова
Федеральное государственное бюджетное учреждение «Научный центр экспертизы средств медицинского применения» Министерства здравоохранения Российской Федерации
Россия

Устюгова Екатерина Александровна, канд. биол. наук

Петровский б-р, д. 8, стр. 2, Москва, 127051



М. В. Савкина
Федеральное государственное бюджетное учреждение «Научный центр экспертизы средств медицинского применения» Министерства здравоохранения Российской Федерации
Россия

Савкина Мария Владимировна, канд. биол. наук

Петровский б-р, д. 8, стр. 2, Москва, 127051



А. А. Горяев
Федеральное государственное бюджетное учреждение «Научный центр экспертизы средств медицинского применения» Министерства здравоохранения Российской Федерации
Россия

Горяев Артем Анатольевич, канд. биол. наук

Петровский б-р, д. 8, стр. 2, Москва, 127051



В. П. Бондарев
Федеральное государственное бюджетное учреждение «Научный центр экспертизы средств медицинского применения» Министерства здравоохранения Российской Федерации
Россия

Бондарев Владимир Петрович, д-р мед. наук, проф.

Петровский б-р, д. 8, стр. 2, Москва, 127051



В. А. Меркулов
Федеральное государственное бюджетное учреждение «Научный центр экспертизы средств медицинского применения» Министерства здравоохранения Российской Федерации; Федеральное государственное автономное образовательное учреждение высшего образования «Первый Московский государственный медицинский университет им. И. М. Сеченова» Министерства здравоохранения Российской Федерации
Россия

Меркулов Вадим Анатольевич, д-р мед. наук, проф.

Петровский б-р, д. 8, стр. 2, Москва, 127051;
Трубецкая ул., д. 8, стр. 2, Москва, 119991



Е. В. Мельникова
Федеральное государственное бюджетное учреждение «Научный центр экспертизы средств медицинского применения» Министерства здравоохранения Российской Федерации
Россия

Мельникова Екатерина Валерьевна, канд. биол. наук

Петровский б-р, д. 8, стр. 2, Москва, 127051



Список литературы

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492

2. Каприна АД, Старинский ВВ, Петрова ГВ, ред. Злокачественные новообразования в России в 2017 году (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России; 2018.

3. Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. PNAS. 2005;102(51):18538–43. https://doi.org/10.1073/pnas.0509182102

4. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313(5795):1960–4. https://doi.org/10.1126/science.1129139

5. Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011;17(13):4550–7. https://doi.org/10.1158/1078-0432.CCR-11-0116

6. Rohaan MW, Wilgenhof S, Haanen JBAG. Adoptive cellular therapies: the current landscape. Virchows Arch. 2019;474(4):449–61. https://doi.org/10.1007/s00428-018-2484-0

7. Salas-Benito D, Casares N, Sarobe P, Lasarte JJ, Hervas-Stubbs S. Pre-selection of PD-1+ tumor-infiltrating CD8+ T cells improves the efficacy of adoptive T-cell therapy. J Immunol Sci. 2018;2(1):55–9.

8. Met Ö, Jensen K.M, Chamberlain CA, Donia M, Svane IM. Principles of adoptive T cell therapy in cancer. Semin Immunopathol. 2019;41(1):49–58. https://doi.org/10.1007/s00281-018-0703-z

9. Lu YC, Yao X, Li YF, El-Gamil M, Dudley ME, Yang JC, et al. Mutated PPP1R3B is recognized by T cells used to treat a melanoma patient who experienced a durable complete tumor regression. J Immunol. 2013;190(12):6034–42. https://doi.org/10.4049/jimmunol.1202830

10. Tran E, Turcotte S, Gros A, Robbins PF, Lu YC, Dudley ME, et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science. 2014;344(6184):641–5. https://doi.org/10.1126/science.1251102

11. Dudley ME, Wunderlich JR, Shelton TE, Even J, Rosenberg SA. Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. J Immunother. 2003;26(4):332–42.

12. Andersen R, Borch TH, Draghi A, Gokuldass A, Rana MAH, Pedersen M, et al. T cells isolated from patients with checkpoint inhibitor-resistant melanoma are functional and can mediate tumor regression. Ann Oncol. 2018;29(7):1575–81. https://doi.org/10.1093/annonc/mdy139

13. Besser MJ, Shapira-Frommer R, Treves AJ, Zippel D, Itzhaki O, Hershkovitz L, et al. Clinical responses in a phase II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in metastatic melanoma patients. Clin Cancer Res. 2010;16(9):2646–55. https://doi.org/10.1158/1078-0432. CCR-10-0041

14. Besser MJ, Shapira-Frommer R, Treves AJ, Zippel D, Itzaki O, Schalmach E, et al. Minimally cultured or selected autologous tumor-infiltrating lymphocytes after a lympho-depleting chemotherapy regimen in metastatic melanoma patients. J Immunother. 2009;32(4):415–23. https://doi.org/10.1097/CJI.0b013e31819c8bda

15. Cohen IJ, Blasberg R. Impact of the tumor microenvironment on tumor-infiltrating lymphocytes: focus on breast cancer. Breast Cancer (Auckl). 2017;11: 1178223417731565. https://doi.org/10.1177/1178223417731565

16. Andersen R, Donia M, Ellebaek E, Borch TH, Kongsted P, Iversen TZ, et al. Long-lasting complete responses in patients with metastatic melanoma after adoptive cell therapy with tumorinfiltrating lymphocytes and an attenuated IL2 regimen. Clin Cancer Res. 2016;22(15):3734–45. https://doi.org/10.1158/1078-0432.CCR-15-1879

17. Pilon-Thomas S, Kuhn L, Ellwanger S, Janssen W, Royster E, Marzban S, et al. Efficacy of adoptive cell transfer of tumor-infiltrating lymphocytes after lymphopenia induction for metastatic melanoma. J Immunother. 2012;35(8):615–20. https://doi.org/10.1097/CJI.0b013e31826e8f5f

18. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34. https://doi.org/10.1056/NEJMoa1504030

19. Stevanović S, Draper LM, Langhan MM, Campbell TE, Kwong ML, Wunderlich JR, et al. Complete regression of metastatic cervical cancer after treatment with human papillomavirus targeted tumor-infiltrating T cells. J Clin Oncol. 2015;33(14):1543–50. https://doi.org/10.1200/JCO.2014.58.9093

20. Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS, et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood. 2009;114(3):535–46. https://doi.org/10.1182/blood-2009-03-211714

21. Chodon T, Comin-Anduix B, Chmielowski B, Koya RC, Wu Z, Auerbach M, et al. Adoptive transfer of MART-1 T-cell receptor transgenic lymphocytes and dendritic cell vaccination in patients with metastatic melanoma. Clin Cancer Res. 2014;20(9):2457–65. https://doi.org/10.1158/1078-0432.CCR-13-3017

22. Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan DA, Feldman SA, et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther. 2011;19(3):620–6. https://doi.org/10.1038/mt.2010.272

23. Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF, Zheng Z, et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother. 2013; 36(2):133–51. https://doi.org/10.1097/CJI.0b013e3182829903

24. Rapoport AP, Stadtmauer EA, Binder-Scholl GK, Goloubeva O, Vogl DT, Lacey SF, et al. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat Med. 2015;21(8):914–21. https://doi.org/10.1038/nm.3910

25. Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol. 2011;29(7):917–24. https://doi.org/10.1200/JCO.2010.32.2537

26. Wolf B, Zimmermann S, Arber C, Irving M, Trueb L, Coukos G. Safety and tolerability of adoptive cell therapy in cancer. Drug Saf. 2019;42(2):315–34. https://doi.org/10.1007/s40264-018-0779-3

27. Linette GP, Stadtmauer EA, Maus MV, Rapoport AP, Levine BL, Emery L, et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood. 2013;122(6):863–71. https://doi.org/10.1182/blood-2013-03-490565

28. Hartmann J, Schüßler-Lenz M, Bondanza A, Buchholz CJ. Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts. EMBO Mol Med. 2017;9(9):1183–97. https://doi.org/10.15252/emmm.201607485

29. Arabi F, Torabi-Rahvar M, Shariati A, Ahmadbeigi N, Naderi M. Antigenic targets of CAR T cell therapy. A retrospective view on clinical trials. Exp Cell Res. 2018;369(1):1–10. https://doi.org/10.1016/j.yexcr.2018.05.009

30. Kochenderfer JN, Wilson WH, Janik JE, Dudley ME, Stetler-Stevenson M, Feldman SA, et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood. 2010;116(20):4099–102. https://doi.org/10.1182/blood-2010-04-281931

31. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368:1509–18. https://doi.org/10.1056/NEJMoa1215134

32. Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365(8):725–33. https://doi.org/10.1056/NEJMoa1103849

33. Wang Z, Wu Z, Liu Y, Han W. New development in CAR-T cell therapy. J Hematol Oncol. 2017;10(1):53. https://doi.org/10.1186/s13045-017-0423-1

34. Charrot S, Hallam S. CAR-T cells: future perspectives. HemaSphere. 2019;3(2):e188. https://doi.org/10.1097/HS9.0000000000000188

35. Long KB, Young RM, Boesteanu AC, Davis MM, Melenhorst JJ, Lacey SF, et al. CAR T cell therapy of non-hematopoietic malignancies: detours on the road to clinical success. Front Immunol. 2018;9:2740. https://doi.org/10.3389/fimmu.2018.02740

36. Dudek AM, Martin S, Garg AD, Agostinis P. Immature, semi-mature, and fully mature dendritic cells: toward a DC-cancer cells interface that augments anticancer immunity. Front Immunol. 2013;4:438. https://doi.org/10.3389/fimmu.2013.00438

37. Garg AD, Vara Perez M, Schaaf M, Agostinis P, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: dendritic cell-based anticancer immunotherapy. Oncoimmunology. 2017;6(7):e1328341. https://doi.org/10.1080/2162402X.2017.1328341

38. Sabado RL, Balan S, Bhardwaj N. Dendritic cell-based immunotherapy. Cell Res. 2017;27(1):74–95. https://doi.org/10.1038/cr.2016.157

39. Anguille S, Smits EL, Bryant C, Van Acker HH, Goossens H, Lion E, et al. Dendritic cells as pharmacological tools for cancer immunotherapy. Pharmacol Rev. 2015;67(4):731–53. https://doi.org/10.1124/pr.114.009456

40. Cohn L, Delamarre L. Dendritic cell-targeted vaccines. Front Immunol. 2014;5:255. https://doi.org/10.3389/fimmu.2014.00255

41. Decker WK, Xing D, Li S, Robinson SN, Yang H, Yao X, et al. Double loading of dendritic cell MHC class I and MHC class II with an AML antigen repertoire enhances correlates of T-cell immunity in vitro via amplification of T-cell help. Vaccine. 2006;24(16):3203–16. https://doi.org/10.1016/j.vaccine.2006.01.029

42. Draube A, Klein-González N, Mattheus S, Brillant C, Hellmich M, Engert A, von Bergwelt-Baildon M. Dendritic cell based tumor vaccination in prostate and renal cell cancer: a systematic review and meta-analysis. PLoS One. 2011;6(4):e18801. https://doi.org/10.1371/journal.pone.0018801

43. Anguille S, Smits EL, Lion E, van Tendeloo VF, Berneman ZN. Clinical use of dendritic cells for cancer therapy. Lancet Oncol. 2014;15(7):e257–67. https://doi.org/10.1016/S1470-2045(13)70585-0

44. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363(5):411–22. https://doi.org/10.1056/NEJMoa1001294

45. Vandenberk L, Belmans J, Van Woensel M, Riva M, Van Gool SW. Eхploiting the immunogenic potential of cancer cells for improved dendric cells vaccines. Front Immunol. 2016;6:663. https://doi.org/10.3389/fimmu.2015.00663

46. Liau LM, Ashkan K, Tran DD, Campian JL, Trusheim JE, Cobbs CS, et al. First results on survival from a large Phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J Transl Med. 2018;16(1):142. https://doi.org/10.1186/s12967-018-1507-6

47. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96. https://doi.org/10.1056/NEJMoa043330


Для цитирования:


Устюгова Е.А., Савкина М.В., Горяев А.А., Бондарев В.П., Меркулов В.А., Мельникова Е.В. Применение биомедицинских клеточных продуктов для лечения онкологических заболеваний. БИОпрепараты. Профилактика, диагностика, лечение. 2019;19(4):206-214. https://doi.org/10.30895/2221-996X-2019-19-4-206-214

For citation:


Ustyugova E.A., Savkina M.V., Goryaev A.A., Bondarev V.P., Merkulov V.A., Melnikova E.V. The Current Use of Biomedical Cell Products for Cancer Treatment. BIOpreparations. Prevention, Diagnosis, Treatment. 2019;19(4):206-214. (In Russ.) https://doi.org/10.30895/2221-996X-2019-19-4-206-214

Просмотров: 254


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2221-996X (Print)
ISSN 2619-1156 (Online)