Immune Response Induced by Immunisation with Antiviral Vaccines
https://doi.org/10.30895/2221-996X-2020-20-1-21-29
Abstract
The review is devoted to specific aspects of the development of post-vaccination immunity following immunisation with different types of antiviral vaccines, as well as to ways of increasing immunogenicity of vaccines and effectiveness of preventive vaccination. Vaccines containing highly purified and recombinant antigens obtained using modern technologies have lower reactogenicity and a higher safety profile, but are less immunogenic compared to live vaccines. Effective vaccines have not been developed for many viral infections yet. Therefore, it is critical to search for ways to enhance immunogenic properties of vaccines in order to increase the efficiency of vaccination, and to develop new vaccine formulations that provide reliable protection of the body against infection. The aim of the paper was to analyse specific aspects of immune response development following immunisation with antiviral vaccines, and approaches to increasing their immunogenicity using adjuvants. It reviews different types of antiviral vaccines, as well as specific aspects of immune response development depending on the nature of a specific antigen. The paper substantiates the use of adjuvants to enhance and regulate the induced immune response. It analyses mechanisms that determine the stimulating effect of adjuvants and summarises data on the adjuvants used in the licensed vaccines for human use. The authors highlight the need for further research to increase the efficiency of vaccination and suggest that one of potential solutions is the use of adjuvants based on recombinant human cytokines.
About the Authors
N. A. AlpatovaRussian Federation
Natalia А. Alpatova, Cand. Sci. (Biol.)
8/2 Petrovsky Blvd, Moscow 127051
Zh. I. Avdeeva
Russian Federation
Zhanna I. Avdeeva, Dr. Sci. (Med.), Professor
8/2 Petrovsky Blvd, Moscow 127051
L. A. Gayderova
Russian Federation
Lidia A. Gayderova, Cand. Sci. (Med.)
8/2 Petrovsky Blvd, Moscow 127051
S. L. Lysikova
Russian Federation
Svetlana L. Lysikova, Cand. Sci. (Med.)
8/2 Petrovsky Blvd, Moscow 127051
N. V. Medunitsyn
Russian Federation
Nikolay V. Medunitsyn, Dr. Sci. (Med.), Professor, Academician of the RAS
8/2 Petrovsky Blvd, Moscow 127051
References
1. Petrov RV, Khaitov RM. Immunogens and vaccines of the new generation. Moscow: GEOTAR-Media; 2011 (In Russ.)
2. Zverev VV, Yumi nova NV. Vaccines. Prevention of viral infections from E. Jenner to date. Voprosy virusologii = Problems of Virology. 2012;(S1):33–42 (In Russ.)
3. Yarilin AA. Immunology. Moscow: GEOTAR-Media; 2010 (In Russ.)
4. Khaitov RM, Pashchenkov MV, Pinegin BV. The role of patternrecognizing receptors in congenital and active immunity in innate and adaptive immunity. Immunologiya = Immunology. 2009;30(1):66–76 (In Russ.)
5. Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009;22(2):240–73. https://doi.org/10.1128/CMR.00046-08
6. Khaitov RM. Immunology. Moscow: GEOTAR-Media; 2013 (In Russ.)
7. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11:373–84. http://doi.org/10.1038/ni.1863
8. Kumar H, Kawai T, Akira S. Pathogen recognition in the innate immune response. Biochem J. 2009;420(1):1–16. http://doi.org/10.1042/BJ20090272
9. Lipinska-Gediga M. Innate Response to Infection. J Clin Cell Immunol. 2013;S13:008. http://doi.org/10.4172/2155-9899.S13-008
10. Thompson MR, Kaminski JJ, Kurt-Jones EA, Fitzgerald КА. Pattern recognition receptors and the innate immune response to viral infection. Viruses. 2011;3(6):920–40. http://doi.org/10.3390/v3060920
11. Medunitsyn NV, Mironov AN, Movsesyants AA. Theory and practice of vaccinology. Moscow: Remedium; 2015 (In Russ.)
12. Skwarczynski M, Toth I. Peptide-based synthetic vaccines. Chem Sci. 2016;7(2):842–54. http://doi.org/10.1039/c5sc03892h
13. O E, Lee YT, Ko EJ, Kim KH, Lee YN, Song JM, et al. Roles of major histocompatibility complex class II in inducing protective immune responses to influenza vaccination. J Virol. 2014;88(14):7764–75. https://doi.org/10.1128/JVI.00748-14
14. Plotkin SA. Correlates of vaccine-induced immunity. Clin Infect Dis. 2008;47(3):401–9. http://dx.doi.org/10.1086/589862
15. Zepp F. Principles of vaccination. Methods Mol Biol. 2016;1403:57–84 https://doi.org/10.1007/978-1-4939-33877_3
16. Orenstein WA, Seib K, Graham-Rowe D, Berkley S. Contemporary vaccine challenges: improving global health one shot at a time. Sci Transl Med. 2014;6(253):253ps11. https://doi.org/10.1126/scitranslmed.3009848
17. Plotkin SA. Correlates of protection induced by vaccination. Clin Vaccine Immunol. 2010;17(7):1055–65. https://doi.org/10.1128/CVI.00131-10
18. Griffiths KL, Khader SA. Novel vaccine approaches for protection against intracellular pathogens. Curr Opin Immunol. 2014;28:58–63. https://doi.org/10.1016/j.coi.2014.02.003
19. Querec T, Bennouna S, Alkan S, Laouar Y, Gorden K, Flavell R, et al. Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity. J Exp Med. 2006;203(2):413–24. https://doi.org/10.1084/jem.20051720
20. Querec TD, Akondy RS, Lee EK, Cao W, Nakaya HI, Teuwen D, et al. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat Immunol. 2009;10(1):116–25. https://doi.org/10.1038/ni.1688
21. Poland JD, Calisher CH, Monath TP, Downs WG, Murphy K. Persistence of neutralizing antibody 30–35 years after immunization with 17D yellow fever vaccine. Bull World Health Organ. 1981;59(6):895–900.
22. Koyama S, Ishii KJ, Kumar H, Tanimoto T, Coban C, Uematsu S, et al. Differential role of TLRand RLR-signaling in the immune responses to influenza A virus infection and vaccination. J Immunol. 2007;179(7):4711–20. https://doi.org/10.4049/jimmunol.179.7.4711
23. Vetter V, Denizer G, Friedland LR, Krishnan J, Shapiro M. Understanding modern-day vaccines: what you need to know. Ann Med. 2018;50(2):110–20. https://doi.org/10.1080/07853890.2017.1407035
24. Bastola R, Noh G, Keum T, Bashyal S, Seo JE, Choi J, et al. Vaccine adjuvants: smart components to boost the immune system. Arch Pharm Res. 2017;40(11):1238–48. https://doi.org/10.1007/s12272-017-0969-z
25. Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to work. Immunity. 2010;33(4):492–503. https://doi.org/10.1016/j.immuni.2010.10.002
26. Apostolico JS, Lunardelli VA, Coirada FC, Boscardin SB, Rosa DS. Adjuvants: classification, modus operandi, and licensing. J Immunol Res. 2016;2016:1459394. https://doi.org/10.1155/2016/1459394
27. Pulendran B, Ahmed R. Immunological mechanisms of vaccination. Nat Immunol. 2011;12(6):509–17. https://doi.org/10.1038/ni.2039
28. Lee S, Nguyen MT. Recent advances of vaccine adjuvants for infectious diseases. Immune Netw. 2015;15(2):51–7. https://doi.org/10.4110/in.2015.15.2.51
29. Steinhagen F, Kinjo T, Bode C, Klinman DM. TLR-based immune adjuvants. Vaccine. 2011;29(17):3341–55. https://doi.org/10.1016/j.vaccine.2010.08.002
30. Tukhvatulin AI, Dzharullaeva AS, Tukhvatulina NM, Shcheblyakov DV, Shmarov MM, Dolzhikova IV, et al. Powerful complex immunoadjuvant based on synergistic effect of combined TLR4 and NOD2 activation significantly enhances magnitude of humoral and cellular adaptive immune responses. PLoS One. 2016; 11(5):e0155650. https://doi.org/10.1371/journal.pone.0155650
31. Awate S, Babiuk LA, Mutwiri G. Mechanisms of action of adjuvants. Front Immunol. 2013;4:114. https://doi.org/10.3389/fimmu.2013.00114
32. Mosca F, Tritto E, Muzzi A, Monaci E, Bagnoli F, Iavarone C, et al. Molecular and cellular signatures of human vaccine adjuvants. Proc Natl Acad Sci USA. 2008;105(30):10501– 06. https://doi.org/10.1073/pnas.0804699105
33. Reed SG, Orr MT, Fox CB. Key roles of adjuvants in modern vaccines. Nat Med. 2013;19(12):1597–608. https://doi.org/10.1038/nm.3409
34. Del Giudice G, Rappuoli R, Didierlaurent AM. Correlates of adjuvanticity: a review on adjuvants in licensed vaccines. Semin Immunol. 2018;39:14–21. https://doi.org/10.1016/j.smim.2018.05.001
35. Di Pasquale A, Preiss S, Tavares Da Silva F, Garcon N. Vaccine adjuvants: from 1920 to 2015 and beyond. Vaccines. 2015;3(2):320–43. https://doi.org/10.3390/vaccines3020320
36. Wagner R, Hildt E. Composition and mode of action of adjuvants in licensed viral vaccines. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2019;62(4):462– 71. https://doi.org/10.1007/s00103-019-02921-1
37. Moyer TJ, Zmolek AC, Irvine DJ. Beyond antigens and adjuvants: formulating future vaccines. J Clin Invest. 2016;126(3):799–808. https://doi.org/10.1172/JCI81083
38. Rambe DS, Giudice GD, Rossi S, Sanicas M. Safety and mechanism of action of licensed vaccine adjuvants. International Current Pharmaceutical Journal. 2015;4(8):420– 31. https://doi.org/10.3329/icpj.v4i8.24024
39. Kazmin D, Nakaya HI, Lee EK, Johnson MJ, van der Most R, van den Berg RA, et al. Systems analysis of protective immune responses to RTS,S malaria vaccination in humans. Proc Natl Acad Sci USA. 2017;114(9):2425–30. https://doi.org/10.1073/pnas.1621489114
40. Leroux-Roels G. Unmet needs in modern vaccinology: adjuvants to improve the immune response. Vaccine. 2010;28(Suppl 3):C25–36. https://doi.org/10.1016/j.vaccine.2010.07.021
41. Khantimirova LM, Kozlova TYu, Postnova EL, Shevtsov VA, Rukavishnikov AV. Retrospective analysis of viral hepatitis B incidence in Russia from 2013 to 2017 in the context of preventive vaccination. BIOpreparaty. Profilaktika, diagnostika, lechenie = BIOpreparations. Prevention, Diagnosis, Treatment. 2018;18(4):225–35 (In Russ.) https://doi.org/10.30895/2221-996X-2018-18-4-225-235
42. Laupeze B, Herve C, Di Pasquale A, Tavares Da Silva F. Adjuvant systems for vaccines: 13 years of post-licensure experience in diverse populations have progressed the way adjuvanted vaccine safety is investigated and understood. Vaccine. 2019;37(38):5670–80. https://doi.org/10.1016/j.vaccine.2019.07.098
43. Nunberg JH, Doyle MV, York SM, York CJ. Interleukin 2 acts as an adjuvant to increase the potency of inactivated rabies virus vaccine. Proc Natl Acad Sci USA. 1989;86(11):4240–3. https://doi.org/10.1073/pnas.86.11.4240
44. Ben-Sasson SZ, Caucheteux S, Crank M, Hu-Li J, Paul WE. IL-1 acts on T cells to enhance the magnitude of in vivo immune responses. Cytokine. 2011;56(1):122–5. https://doi.org/10.1016/j.cyto.2011.07.006
45. Li Y, Zhou M, Luo Z, Zhang Y, Cui M, Chen H, et al. Overexpression of interleukin-7 extends the humoral immune response induced by rabies vaccination. J Virol. 2017;91(7):e02324-16. https://doi.org/10.1128/JVI.02324-16
46. Gai W, Zheng W, Wang C, Wong G, Song Y, Zheng X. Immunization with recombinant rabies virus expressing Interleukin-18 exhibits enhanced immunogenicity and protection in mice. Oncotarget. 2017;8(53):91505–15. https://doi.org/10.18632/oncotarget.21065
47. Ju B, Li D, Ji X, Liu J, Peng H, Wang S, et al. Interleukin-21 administration leads to enhanced antigen-specific T cell responses and natural killer cells in HIV-1 vaccinated mice. Cell Immunol. 2016;303:55–65. https://doi.org/10.1016/j.cellimm.2016.03.006
48. Grasse M, Meryk A, Miggitsch C, Grubeck-Loebenstein B. GM-CSF improves the immune response to the diphtheriacomponent in a multivalent vaccine. Vaccine. 2018;36(31):4672– 80. https://doi.org/10.1016/j.vaccine.2018.06.033
49. Toporovski R, Morrow MP, Weiner DB. Interferons as potential adjuvants in prophylactic vaccines. Expert Opin Biol Ther. 2010;10(10):1489–500. https://doi.org/10.1517/14712598.2010.521495
50. Simbirtsev AS, Petrov AV, Pigareva NV, Nikolaev AT. New opportunities for using recombinant cytokines as adjuvants for vaccination. BIOpreparaty. Profilaktika, diagnostika, lechenie = BIOpreparations. Prevention, Diagnosis, Treatment. 2011;(1):16–20 (In Russ.)
51. Miquilena-Colina ME, Lozano-Rodriguez T, Garcia-Pozo L, Saez A, Rizza P, Capone I, et al. Recombinant interferonα2b improves immune response to hepatitis B vaccination in haemodialysis patients: results of a randomised clinical trial. Vaccine. 2009;27(41):5654–60. https://doi.org/10.1016/j.vaccine.2009.07.014
52. Yağci M, Acar K, Sucak GT, Yamac K, Haznedar R. Hepatitis B virus vaccine in lymphoproliferative disorders: a prospective randomized study evaluating the efficacy of granulocyte-macrophage colony stimulating factor as a vaccine adjuvant. Eur J Haematol. 2007;79(4):292–6. https://doi.org/10.1111/j.1600-0609.2007.00912.x
Review
For citations:
Alpatova N.A., Avdeeva Zh.I., Gayderova L.A., Lysikova S.L., Medunitsyn N.V. Immune Response Induced by Immunisation with Antiviral Vaccines. BIOpreparations. Prevention, Diagnosis, Treatment. 2020;20(1):21-29. (In Russ.) https://doi.org/10.30895/2221-996X-2020-20-1-21-29