DNA and RNA Vaccines: Current Status, Quality Requirements and Specific Aspects of Preclinical Studies
https://doi.org/10.30895/2221-996X-2019-19-2-72-80
Abstract
This review focuses on DNA and RNA vaccines whose potential use was first considered at the end of the 20th century. However, not a single bacterial plasmid-based or mRNA vaccine has been used since that time in public healthcare for the prevention of infectious diseases. Nevertheless, vaccines containing recombinant nucleic acids as the active ingredient still attract interest due to the possibility of rapid development, low-cost production, safety of the technology and the potential to activate cellular and humoral immunity. Recent technological advances have largely overcome the problems of low immunogenicity, instability, and difficulties with the delivery of DNA and RNA vaccines in humans. The aim of this review was to present the main strategies of development of DNA and RNA vaccines designed to prevent infectious diseases, and to summarise requirements for the quality control and preclinical studies. The article examines the general principles of creation of plasmid vectors encoding protective antigens. It describes new technologies used in the creation of DNA vaccines with plasmids encoding an attenuated virus genome (iDNA and PPLAV), and RNA vaccines based on mRNA and self-amplifying RNAs. The article presents current regulatory requirements for the choice of quality parameters to be tested and the general principles of preclinical studies of DNA and RNA vaccines.
Keywords
About the Authors
A. A. GoryaevRussian Federation
Artem A. Goryaev, Cand. Sci. (Biol.)
8/2 Petrovsky Blvd, Moscow 127051, Russian Federation
M. V. Savkina
Russian Federation
Maria V. Savkina, Cand. Sci. (Biol.)
8/2 Petrovsky Blvd, Moscow 127051, Russian Federation
Yu. I. Obukhov
Russian Federation
Yuri I. Obukhov
8/2 Petrovsky Blvd, Moscow 127051, Russian Federation
V. A. Merkulov
Russian Federation
Vadim A. Merkulov, Dr. Sci. (Med.), Professor
8/2 Petrovsky Blvd, Moscow 127051, Russian Federation
8/2 Trubetskaya St, Moscow 119991, Russian Federation
Yu. V. Olefir
Russian Federation
Yuri V. Olefir, Dr. Sci. (Med.), Senior Research Associate
8/2 Petrovsky Blvd, Moscow 127051, Russian Federation
References
1. Tang DC, DeVit M, Johnston SA. Genetic immunization is a simple method for eliciting an immune response. Nature. 1992;356(6365):152–4. https://doi.org/10.1038/356152a0
2. Ulmer JB, Donnelly JJ, Parker SE, Rhodes GH, Felgner PL, Dwarki VJ, et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science. 1993;259(5102):1745–9. https://doi.org/10.1126/science.8456302
3. Donnelly JJ, Ulmer JB, Shiver JW, Liu MA. DNA vaccines. Annu Rev Immunol. 1997;15:617–48. https://doi.org/10.1146/annurev.immunol.15.1.617
4. Gurunathan S, Klinman DM, Seder RA. DNA vaccines: immunology, application, and optimization. Annu Rev Immunol. 2000;18:927–74. https://doi.org/10.1146/annurev.immunol.18.1.927
5. Hobernik D, Bros M. DNA vaccines — how far from clinical use? Int J Mol Sci. 2018;19(11):3605. https://doi.org/10.3390/ijms19113605
6. Liu MA, Ulmer JB. Human clinical trials of plasmid DNA vaccines. Adv Genet. 2005;55:25–40. https://doi.org/10.1016/S0065-2660(05)55002-8
7. Weniger BG, Anglin IE, Tong T, Pensiero M, Pullen JK, Nucleic Acid Delivery Devices for HIV Vaccines Workshop Group. Workshop report: nucleic acid delivery devices for HIV vaccines: workshop proceedings, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA, May 21, 2015. Vaccine. 2018;36(4):427–37. https://doi.org/10.1016/j.vaccine.2017.10.071
8. Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines — a new era in vaccinology. Nat Rev Drug Discov. 2018;17(4):261–79. https://doi.org/10.1038/nrd.2017.243
9. Kumaragurubaran K, Kaliaperumal K. DNA vaccine: the miniature miracle. Vet. World. 2013;6(4):228–32. https://doi.org/10.5455/vetworld.2013.228-232
10. Cranenburgh R. Development of the ideal DNA vaccine requires the optimization of delivery strategies and plasmid vectors. BioPharm International. 2011;2011 Suppl.(7). http://www.biopharminternational.com/dna-vaccine-delivery
11. Garmory HS, Brown KA, Titball RW. DNA vaccines: improving expression of antigens. Genet Vaccines Ther. 2003;1:2. https://doi.org/10.1186/1479-0556-1-2
12. Li L, Petrovsky N. Molecular mechanisms for enhanced DNA vaccine immunogenicity. Expert Rev Vaccines. 2016;15(3):313–29. https://doi.org/10.1586/14760584.2016.1124762
13. Liu Z, Chen O, Wall JBJ, Zheng M, Zhou Y, Wang L, et al. Systematic comparison of 2A peptides for cloning multigenes in a polycistronic vector. Sci Rep. 2017;7(1):2193. https://doi.org/10.1038/s41598-017-02460-2
14. Li L, Petrovsky N. Molecular adjuvants for DNA vaccines. Curr Issues Mol Biol. 2017;22:17–40. https://doi.org/10.21775/cimb.022.017
15. Darquet AM, Cameron B, Wils P, Scherman D, Crouzet J. A new DNA vehicle for nonviral gene delivery: supercoiled minicircle. Gene Ther. 1997;4:1341–9. https://doi.org/10.1038/sj.gt.3300540
16. Hardee CL, Arévalo-Soliz LM, Hornstein BD, Zechiedrich L. Advances in non-viral DNA vectors for gene therapy. Genes (Basel). 2017;8(2):65. https://doi.org/10.3390/genes8020065
17. Stenler S, Blomberg P, Smith CE. Safety and efficacy of DNA vaccines: plasmids vs. minicircles. Hum Vaccin Immunother. 2014;10(5):1306–8. https://doi.org/10.4161/hv.28077
18. Riede O, Seifert K, Oswald D, Endmann A, Hock C, Winkler A, et al. Preclinical safety and tolerability of a repeatedly administered human leishmaniasis DNA vaccine. Gene Therapy. 2015;22(8):628–35.https://doi.org/10.1038/gt.2015.35
19. Pushko P, Ishmukhametov АА, Bredenbeek PP, Lukashevich IS. Experimental DNAlaunched live-attenuated vaccines against yellow fever. Èpidemiologiâ i vakcinoprofilaktika = Epidemiology and Vaccinal Prevention. 2019;18(1):18–25 (In Russ.) https://doi.org/10.31631/2073-3046-2019-18-1-18-25
20. Pushko P, Lukashevich IS, Weaver SC, Tretyakova I. DNA-launched live-attenuated vaccines for biodefense applications. Expert Rev Vaccines. 2016;15(9):1223–34. https://doi.org/10.1080/14760584.2016.1175943
21. Dallmeier K, Neyts J. Bacterial artificial chromosomes. Patent WIPO N WO2014174078; 2014.
22. Ulmer JB, Mason PW, Geall A, Mandl CW. RNA-based vaccines. Vaccine. 2012;30(30):4414–8. https://doi.org/10.1016/j.vaccine.2012.04.060
23. Lundstrom K. RNA-based drugs and vaccines. Expert Rev Vaccines. 2015;14(2):253–63. https://doi.org/10.1586/14760584.2015.959932
24. Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics — developing a new class of drugs. Nat Rev Drug Discov. 2014;13(10):759–80. https://doi.org/10.1038/nrd4278
25. Geall AJ, Mandl CW, Ulmer JB. RNA: the new revolution in nucleic acid vaccines. Semin Immunol. 2013;25(2):152–9. https://doi.org/10.1016/j.smim.2013.05.001
26. Weissman D. mRNA transcript therapy. Expert Rev Vaccines. 2015;14(2):265–81. https://doi.org/10.1586/14760584.2015.973859
27. Youn H, Chung JK. Modified mRNA as an alternative to plasmid DNA (pDNA) for transcript replacement and vaccination therapy. Expert Opin Biol Ther. 2015;15(9):1337–48. https://doi.org/10.1517/14712598.2015.1057563
28. Lundstrom K. Latest development on RNA-based drugs and vaccines. Future Sci OA. 2018;4(5):FSO300. https://doi.org/10.4155/fsoa-2017-0151
29. Eberhardt W, Doller A, Akool el-S, Pfeilschifter J. Modulation of mRNA stability as a novel therapeutic approach. Pharmacol Ther. 2007;114(1):56–73. https://doi.org/10.1016/j.pharmthera.2007.01.002
30. Atkins GJ, Fleeton MN, Sheahan BJ. Therapeutic and prophylactic applications of alphavirus vectors. Expert Rev Mol Med. 2008;10:e33. https://doi.org/10.1017/S1462399408000859
31. Brito LA, Kommareddy S, Maione D, Uematsu Y, Giovani C, Berlanda Scorza F, et al. Self-amplifying mRNA vaccines. Adv Genet. 2015;89:179–233. https://doi.org/10.1016/bs.adgen.2014.10.005
32. Klinman DM, Klaschik S, Tross D, Shirota H, Steinhagen F. FDA guidance on prophylactic DNA vaccines: analysis and recommendations. Vaccine. 2010;28(16):2801–5. https://doi.org/10.1016/j.vaccine.2009.11.025
33. Klug B, Reinhardt J, Robertson J. Current status of regulations for DNA vaccines. In: Thalhamer J, Weiss R, Scheiblhofer S, eds. Gene Vaccines. New York: Springer; 2012. P. 285–95. https://doi.org/10.1007/978-3-7091-0439-2_14
34. Bahl K, Senn JJ, Yuzhakov O, Bulychev A, Brito LA, Hassett KJ, et al. Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses. Mol Ther. 2017;25(6):1316–27. https://doi.org/10.1016/j.ymthe.2017.03.035
35. Ledwith BJ, Manam S, Troilo PJ, Barnum AB, Pauley CJ, Griffiths TG 2nd. Plasmid DNA vaccines: assay for integration into host genomic DNA. Dev Biol. 2000;104:33–43.
36.
37.
38.
Review
For citations:
Goryaev A.A., Savkina M.V., Obukhov Yu.I., Merkulov V.A., Olefir Yu.V. DNA and RNA Vaccines: Current Status, Quality Requirements and Specific Aspects of Preclinical Studies. BIOpreparations. Prevention, Diagnosis, Treatment. 2019;19(2):72-80. (In Russ.) https://doi.org/10.30895/2221-996X-2019-19-2-72-80