Genome-Editing and Biomedical Cell Products: Current State, Safety and Efficacy
https://doi.org/10.30895/2221-996X-2018-18-3-140-149
Abstract
Keywords
About the Authors
A. A. GoryaevRussian Federation
Candidate of Biological Sciences, Deputy Head of the Division for Expert Evaluation of Antibacterial Medicinal Immunobiological Products of the Centre for Evaluation and Control of Medicinal Immunobiological Products of the FSBI «SCEEMP» of the Ministry of Health of Russia
8/2 Petrovsky Blvd, Moscow 127051, Russian Federation
M. V. Savkina
Russian Federation
Candidate of Biological Sciences, 1st Professional Category Expert of the Division for Expert Evaluation of Antibacterial Medicinal Immunobiological Products of the Centre for Evaluation and Control of Medicinal Immunobiological Products of the FSBI «SCEEMP» of the Ministry of Health of Russia
8/2 Petrovsky Blvd, Moscow 127051, Russian Federation
K. M. Mefed
Russian Federation
Candidate of Biological Sciences, Chief Expert of the Laboratory of Viral Vaccines of the Testing Centre for Evaluation of Medicinal Immunobiological Products’ Quality of the FSBI «SCEEMP» of the Ministry of Health of Russia
8/2 Petrovsky Blvd, Moscow 127051, Russian Federation
V. P. Bondarev
Russian Federation
Doctor of Medical Sciences, Professor, Director of the Centre for Evaluation and Control of Medicinal Immunobiological Products of the FSBI «SCEEMP» of the Ministry of Health of Russia
8/2 Petrovsky Blvd, Moscow 127051, Russian Federation
V. A. Merkulov
Russian Federation
Doctor of Medical Sciences, Professor, Deputy Director-General for Medicinal Products` Evaluation of the FSBI «SCEEMP» of the Ministry of Health of Russia
8/2 Petrovsky Blvd, Moscow 127051, Russian Federation
V. V. Tarasov
Russian Federation
Candidate of Pharmaceutical Sciences, Assistant Professor, Director of the Institute of Pharmacy and Translational Medicine of FSAEI HE I.M. Sechenov First MSMU MOH Russia (Sechenovskiy University)
8/2 Trubetskaya St., Moscow 119991, Russian Federation
References
1. Maeder ML, Gersbach CA. Genome-editing technologies for gene and cell therapy. Mol Ther. 2016;24(3):430–46. https://doi.org/10.1038/mt.2016.10
2. Cai M, Yang Y. Targeted genome editing tools for disease modeling and gene therapy. Curr Gene Ther. 2014;14(1);2–9. https://doi.org/10.2174/156652321402140318165450
3. Perez-Pinera P, Ousterout DG, Gersbach CA. Advances in targeted genome editing. Curr Opin Chem Biol. 2012;16(3–4):268–77. https://doi.org/10.1016/j.cbpa.2012.06.007
4. Wirth T, Parker N, Ylä-Herttuala S. History of gene therapy. Gene. 2013;525(2);162–9. https://doi.org/10.1016/j.gene.2013.03.137
5. Федеральный закон Российской Федерации от 12 апреля 2010 г. № 61-ФЗ «Об обращении лекарственных средств». [Federal Law of the Russian Federation of April, 12, 2010, No. 61-FZ «On Circulation of Medicines» (In Russ.)]
6. Федеральный закон Российской Федерации от 23 июня 2016 г. № 180-ФЗ «О биомедицинских клеточных продуктах». [Federal Law of the Russian Federation of June, 23, 2016, No. 180-FZ «On Biomedical Cell Product» (In Russ.)]
7. Directive 2001/83/EC of the European Parliament and of the Council of 6 November 2001 on the Community Code Relating to Medicinal Products for Human Use.
8. US Food and Drug Administration. Application of Current Statutory Authorities to Human Somatic Cell Therapy Products and Gene Therapy. Federal Register. 1993;58(197):53248–51. Available from: https://www.fda.gov/downloads/BiologicsBloodVaccines/SafetyAvailability/UCM148113.pdf
9. Nemudryi AA, Valetdinova KR, Medvedev SP, Zakian SM. TALEN and CRISPR/Cas genome editing systems: tools of discovery. Acta Naturae. 2014;6(3):19–40.
10. He Z, Proudfoot C, Whitelaw CB, Lillico SG. Comparison of CRISPR/Cas9 and TALENs on editing an integrated EGFP gene in the genome of HEK293FT cells. Springerplus. 2016;5(1):814. https://doi.org/10.1186/s40064-016-2536-3
11. Germini D, Tsfasman T, Zakharova VV, Sjakste N, Lipinski M, Vassetzky Y. A comparison of techniques to evaluate the effectiveness of genome editing. Trends Biotechnol. 2018; 36(2):147–59. https://doi.org/10.1016/j.tibtech.2017.10.008
12. Guha TK, Wai A, Hausner G. Programmable genome editing tools and their regulation for efficient genome engineering. Comput Struct Biotechnol J. 2017;15:146–60. https://doi.org/10.1016/j.csbj.2016.12.006
13. Gaj T, Gersbach CA, Barbas III CF. ZFN, TALEN and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397–405. https://doi.org/10.1016/j.tibtech.2013.04.004
14. Carroll D. Genome engineering with zinc-finger nucleases. Genetics. 2011;188(4):773–82. https://doi.org/10.1534/genetics.111.131433
15. Chen KY, Knoepfler PS. To CRISPR and beyond: the evolution of genome editing in stem cells. Regen Med. 2016;11(8):801–16. https://doi.org/10.2217/rme-2016-0107
16. Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, Yang B. TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res. 2011;39(1):359–72. https://doi.org/10.1093/nar/gkq704
17. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21. https://doi.org/10.1126/science.1225829
18. Jiang F, Doudna JA. CRISPR-Cas9 structures and mechanisms. Annu Rev Biophys. 2017;46:505–29. https://doi.org/10.1146/annurev-biophys-062215-010822
19. Kleinstiver BP, Tsai SQ, Prew MS, Nguyen NT, Welch MM, Lopez JM, et al. Genome-wide specificities of CRISPRCas Cpf1 nucleases in human cells. Nat Biotechnol. 2016;34(8):869–74. https://doi.org/10.1038/nbt.3620
20. Kwarteng A, Ahuno ST, Kwakye-Nuako G. The therapeutic landscape of HIV-1 via genome editing. AIDS Res Ther. 2017;14:32. https://doi.org/10.1186/s12981-017-0157-8
21. Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. 2014;370(10):901–10. https://doi.org/10.1056/NEJMoa1300662
22. Ghobadi A. Chimeric antigen receptor T cell therapy for NonHodgkin Lymphoma. Curr Res Transl Med. 2018;66(2):43–9. https://doi.org/10.1016/j.retram.2018.03.005
23. Kulemzin SV, Kuznetsova VV, Mamonkin M, Taranin AV, Gorchakov AA. Engineering chimeric antigen receptors. Acta Naturae. 2017;9(1):6–14.
24. Harris DT, Kranz DM. Adoptive T Cell Therapies: A comparison of T cell receptors and chimeric antigen receptors. Trends Pharmacol Sci. 2016;37(3):220–30. https://doi. org/10.1016/j.tips.2015.11.004
25. Jackson HJ, Rafiq S, Brentjens RJ. Driving CAR T-cells forward. Nat Rev Clin Oncol. 2016;13(6):370–83. https://dx.doi.org/10.1038%2Fnrclinonc.2016.36
26. Fesnak AD, June CH, Levine BL. Engineered T Cells: The promise and challenges of cancer immunotherapy. Nat Rev Cancer. 2016;16(9):566–81. https://doi.org/10.1038/nrc.2016.97
27. CD19 T-CAR for treatment of children and young adults with r/r B-ALL (NCT03467256). Available from: https://clinicaltrials.gov/ct2/show/NCT03467256?term=NCT03467256&rank=1
28. Annex I — summary of product characteristics. In: Strimvelis: EPAR — product information. EMA. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/003854/WC500208199.pdf
29. Booth C, Gaspar HB, Thrasher AJ. Treating immunodeficiency through HSC gene therapy. Trends Mol Med. 2016;22(4):317–27. https://doi.org/10.1016/j.molmed.2016.02.002
30. Aiuti A, Ficara F, Cattaneo F, Bordignon C, Roncarolo MG. Gene therapy for adenosine deaminase deficiency. Curr Opin Allergy Clin Immunol. 2003;3(6):461–6.
31. Cicalese MP, Ferrua F, Castagnaro L, Pajno R, Barzaghi F, Giannelli S, et al. Update on the safety and efficacy of retroviral gene therapy for immunodeficiency due to adenosine deaminase deficiency. Blood. 2016;128(1):45–54. https://doi.org/10.1182/blood-2016-01-688226
32. Cicalese MP, Ferrua F, Castagnaro L, Rolfe K, De Boever E, Reinhardt RR, et al. Gene therapy for adenosine deaminase deficiency: a comprehensive evaluation of shortand medium-term safety. Mol Ther. 2018;26(3):917–31. https://doi.org/10.1016/j.ymthe.2017.12.022
33. Assessment report. Zalmoxis (EMA/CHMP/589978/2016). EMA; 2016.
34. Li HW, Sykes M. Emerging concepts in haematopoietic cell transplantation. Nat Rev Immunol. 2012;12(6):403–16. https://doi.org/10.1038/nri3226
35. Atilla E, Atilla PA, Bozdağ SC, Demirer T. A review of infectious complications after haploidentical hematopoietic stem cell transplantations. Infection. 2017;45(4):403–11. https://doi.org/10.1007/s15010-017-1016-1
36. Greco R, Oliveira G, Stanghellini MT, Vago L, Bondanza A, Peccatori J, et al. Improving the safety of cell therapy with the TK-suicide gene. Front Pharmacol. 2015;6:95. https://doi.org/10.3389/fphar.2015.00095
37. Ciceri F, Bonini C, Stanghellini MT, Bondanza A, Traversari C, Salomoni M, et al. Infusion of suicide-gene-engineered donor lymphocytes after family haploidentical haemopoietic stemcell transplantation for leukaemia (the TK007 trial): a non-randomised phase I-II study. Lancet Oncol. 2009;10(5):489–500. https://doi.org/10.1016/S1470-2045(09)70074-9
38. Summary basis for regulatory action — KYMRIAH. FDA; 2018. Available from: https://www.fda.gov/downloads/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/UCM606836.pdf
39. Package insert — KYMRIAH. FDA. Available from: https://www.fda.gov/downloads/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/UCM573941.pdf
40. Maude SL, Pulsipher MA, Boyer MW, Grupp SA, Davies SM, Phillips CL, et al. Efficacy and safety of CTL019 in the first US phase II multicenter trial in pediatric relapsed/refractory acute lymphoblastic leukemia: results of an interim analysis. Blood. 2016;128(22):2801. Available from: http://www.bloodjournal.org/content/128/22/2801/tab-figures-only
41. Study of Efficacy and Safety of CTL019 in Adult DLBCL Patients (JULIET) (NCT02445248). Available from: https://clinicaltrials.gov/ct2/show/NCT02445248
42. Schuster SJ, Bishop MR, Tam C, Waller EK, Borchmann P, Mcguirk J, et al. Global pivotal phase 2 trial of the CD19-targeted therapy CTL019 in adult patients with relapsed or refractory (r/r) diffuse large B-cell lymphoma (DLBCL) — an interim analysis. Hematological Oncology. 2017;35(S2):27. https://doi.org/10.1002/hon.2437_6
43. Summary basis for regulatory action — YESCARTA. FDA; 2017. Available from: https://www.fda.gov/downloads/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/UCM584335.pdf
44. Package insert — YESCARTA. FDA. Available from: https://www.fda.gov/downloads/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/UCM581226.pdf
45. Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377(26):2531–44. https://doi.org/10.1056/NEJMoa1707447
46. Wilkins O, Keeler AM, Flotte TR. CAR T-сell therapy: progress and prospects. Hum Gene Ther Methods. 2017;28(2):61–6. https://doi.org/10.1089/hgtb.2016.153
47. Zhou X, Di Stasi A, Tey S-K, Krance RA, Martinez C, Leung KS, et al. Long-term outcome and immune reconstitution after haploidentical stem cell transplant in recipients of allodepleted-T-cells expressing the inducible Caspase-9 safety transgene. Blood. 2014;123(25):3895–905. https://doi.org/10.1182/blood-2014-01-551671.
Review
For citations:
Goryaev A.A., Savkina M.V., Mefed K.M., Bondarev V.P., Merkulov V.A., Tarasov V.V. Genome-Editing and Biomedical Cell Products: Current State, Safety and Efficacy. BIOpreparations. Prevention, Diagnosis, Treatment. 2018;18(3):140-149. (In Russ.) https://doi.org/10.30895/2221-996X-2018-18-3-140-149