Preview

Biological Products. Prevention, Diagnosis, Treatment

Advanced search

Genome-Editing and Biomedical Cell Products: Current State, Safety and Efficacy

https://doi.org/10.30895/2221-996X-2018-18-3-140-149

Abstract

Advances in ex vivo technologies of human genome editing have made it possible to develop new approaches to the treatment of genetic, oncological, infectious and other diseases, which may involve the use of biomedical cell products. However, despite the rapid development of these technologies and a large number of clinical trials conducted in many countries around the world, only 4 products (Strimvelis, Zalmoxis, Kymriah and Yescarta) containing ex vivo genetically modified human cells are authorised for use in the European Union and the United States of America. This paper considers three promising technologies (ZFN, TALEN and CRISPR) that allow for easy and effective editing of the genome at the sites of interest, thereby creating a platform for further development of the genetic engineering of human cells. It describes the technology of engineering chimeric antigen receptors (CARs). It also provides data on the efficacy and safety of the approved products: Strimvelis which contains autologous CD34+ cells transduced ex vivo with a retroviral vector containing adenosine deaminase gene, Zalmoxis which contains modified allogeneic T-cells, and two products: Kymriah and Yescarta which contain autologous T-cells with CARs to CD19 antigen, intended for the treatment of CD19+ hematological malignancies.

About the Authors

A. A. Goryaev
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Candidate of Biological Sciences, Deputy Head of the Division for Expert Evaluation of Antibacterial Medicinal Immunobiological Products of the Centre for Evaluation and Control of Medicinal Immunobiological Products of the FSBI «SCEEMP» of the Ministry of Health of Russia

8/2 Petrovsky Blvd, Moscow 127051, Russian Federation

 



M. V. Savkina
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Candidate of Biological Sciences, 1st Professional Category Expert of the Division  for Expert Evaluation of Antibacterial Medicinal Immunobiological Products of the Centre for Evaluation and Control of Medicinal Immunobiological Products of the FSBI «SCEEMP» of the Ministry of Health of Russia

8/2 Petrovsky Blvd, Moscow 127051, Russian Federation

 



K. M. Mefed
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Candidate of Biological Sciences, Chief Expert of the Laboratory of Viral Vaccines of the Testing Centre for Evaluation of Medicinal Immunobiological Products’ Quality of the FSBI «SCEEMP» of the Ministry of Health of Russia

8/2 Petrovsky Blvd, Moscow 127051, Russian Federation

 



V. P. Bondarev
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Doctor of Medical Sciences, Professor, Director of the Centre for Evaluation and Control of Medicinal Immunobiological Products of the FSBI «SCEEMP» of the  Ministry of Health of Russia

8/2 Petrovsky Blvd, Moscow 127051, Russian Federation

 



V. A. Merkulov
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Doctor of Medical Sciences, Professor, Deputy Director-General for Medicinal Products` Evaluation of the FSBI «SCEEMP» of the Ministry of Health of Russia

8/2 Petrovsky Blvd, Moscow 127051, Russian Federation



V. V. Tarasov
I. M. Sechenov First Moscow State Medical University
Russian Federation

Candidate of Pharmaceutical Sciences, Assistant Professor, Director of the Institute of Pharmacy and Translational Medicine of FSAEI HE I.M. Sechenov First MSMU MOH Russia (Sechenovskiy University)

8/2 Trubetskaya St., Moscow 119991, Russian Federation

 



References

1. Maeder ML, Gersbach CA. Genome-editing technologies for gene and cell therapy. Mol Ther. 2016;24(3):430–46. https://doi.org/10.1038/mt.2016.10

2. Cai M, Yang Y. Targeted genome editing tools for disease modeling and gene therapy. Curr Gene Ther. 2014;14(1);2–9. https://doi.org/10.2174/156652321402140318165450

3. Perez-Pinera P, Ousterout DG, Gersbach CA. Advances in targeted genome editing. Curr Opin Chem Biol. 2012;16(3–4):268–77. https://doi.org/10.1016/j.cbpa.2012.06.007

4. Wirth T, Parker N, Ylä-Herttuala S. History of gene therapy. Gene. 2013;525(2);162–9. https://doi.org/10.1016/j.gene.2013.03.137

5. Федеральный закон Российской Федерации от 12 апреля 2010 г. № 61-ФЗ «Об обращении лекарственных средств». [Federal Law of the Russian Federation of April, 12, 2010, No. 61-FZ «On Circulation of Medicines» (In Russ.)]

6. Федеральный закон Российской Федерации от 23 июня 2016 г. № 180-ФЗ «О биомедицинских клеточных продуктах». [Federal Law of the Russian Federation of June, 23, 2016, No. 180-FZ «On Biomedical Cell Product» (In Russ.)]

7. Directive 2001/83/EC of the European Parliament and of the Council of 6 November 2001 on the Community Code Relating to Medicinal Products for Human Use.

8. US Food and Drug Administration. Application of Current Statutory Authorities to Human Somatic Cell Therapy Products and Gene Therapy. Federal Register. 1993;58(197):53248–51. Available from: https://www.fda.gov/downloads/BiologicsBloodVaccines/SafetyAvailability/UCM148113.pdf

9. Nemudryi AA, Valetdinova KR, Medvedev SP, Zakian SM. TALEN and CRISPR/Cas genome editing systems: tools of discovery. Acta Naturae. 2014;6(3):19–40.

10. He Z, Proudfoot C, Whitelaw CB, Lillico SG. Comparison of CRISPR/Cas9 and TALENs on editing an integrated EGFP gene in the genome of HEK293FT cells. Springerplus. 2016;5(1):814. https://doi.org/10.1186/s40064-016-2536-3

11. Germini D, Tsfasman T, Zakharova VV, Sjakste N, Lipinski M, Vassetzky Y. A comparison of techniques to evaluate the effectiveness of genome editing. Trends Biotechnol. 2018; 36(2):147–59. https://doi.org/10.1016/j.tibtech.2017.10.008

12. Guha TK, Wai A, Hausner G. Programmable genome editing tools and their regulation for efficient genome engineering. Comput Struct Biotechnol J. 2017;15:146–60. https://doi.org/10.1016/j.csbj.2016.12.006

13. Gaj T, Gersbach CA, Barbas III CF. ZFN, TALEN and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397–405. https://doi.org/10.1016/j.tibtech.2013.04.004

14. Carroll D. Genome engineering with zinc-finger nucleases. Genetics. 2011;188(4):773–82. https://doi.org/10.1534/genetics.111.131433

15. Chen KY, Knoepfler PS. To CRISPR and beyond: the evolution of genome editing in stem cells. Regen Med. 2016;11(8):801–16. https://doi.org/10.2217/rme-2016-0107

16. Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, Yang B. TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res. 2011;39(1):359–72. https://doi.org/10.1093/nar/gkq704

17. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21. https://doi.org/10.1126/science.1225829

18. Jiang F, Doudna JA. CRISPR-Cas9 structures and mechanisms. Annu Rev Biophys. 2017;46:505–29. https://doi.org/10.1146/annurev-biophys-062215-010822

19. Kleinstiver BP, Tsai SQ, Prew MS, Nguyen NT, Welch MM, Lopez JM, et al. Genome-wide specificities of CRISPRCas Cpf1 nucleases in human cells. Nat Biotechnol. 2016;34(8):869–74. https://doi.org/10.1038/nbt.3620

20. Kwarteng A, Ahuno ST, Kwakye-Nuako G. The therapeutic landscape of HIV-1 via genome editing. AIDS Res Ther. 2017;14:32. https://doi.org/10.1186/s12981-017-0157-8

21. Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. 2014;370(10):901–10. https://doi.org/10.1056/NEJMoa1300662

22. Ghobadi A. Chimeric antigen receptor T cell therapy for NonHodgkin Lymphoma. Curr Res Transl Med. 2018;66(2):43–9. https://doi.org/10.1016/j.retram.2018.03.005

23. Kulemzin SV, Kuznetsova VV, Mamonkin M, Taranin AV, Gorchakov AA. Engineering chimeric antigen receptors. Acta Naturae. 2017;9(1):6–14.

24. Harris DT, Kranz DM. Adoptive T Cell Therapies: A comparison of T cell receptors and chimeric antigen receptors. Trends Pharmacol Sci. 2016;37(3):220–30. https://doi. org/10.1016/j.tips.2015.11.004

25. Jackson HJ, Rafiq S, Brentjens RJ. Driving CAR T-cells forward. Nat Rev Clin Oncol. 2016;13(6):370–83. https://dx.doi.org/10.1038%2Fnrclinonc.2016.36

26. Fesnak AD, June CH, Levine BL. Engineered T Cells: The promise and challenges of cancer immunotherapy. Nat Rev Cancer. 2016;16(9):566–81. https://doi.org/10.1038/nrc.2016.97

27. CD19 T-CAR for treatment of children and young adults with r/r B-ALL (NCT03467256). Available from: https://clinicaltrials.gov/ct2/show/NCT03467256?term=NCT03467256&rank=1

28. Annex I — summary of product characteristics. In: Strimvelis: EPAR — product information. EMA. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/003854/WC500208199.pdf

29. Booth C, Gaspar HB, Thrasher AJ. Treating immunodeficiency through HSC gene therapy. Trends Mol Med. 2016;22(4):317–27. https://doi.org/10.1016/j.molmed.2016.02.002

30. Aiuti A, Ficara F, Cattaneo F, Bordignon C, Roncarolo MG. Gene therapy for adenosine deaminase deficiency. Curr Opin Allergy Clin Immunol. 2003;3(6):461–6.

31. Cicalese MP, Ferrua F, Castagnaro L, Pajno R, Barzaghi F, Giannelli S, et al. Update on the safety and efficacy of retroviral gene therapy for immunodeficiency due to adenosine deaminase deficiency. Blood. 2016;128(1):45–54. https://doi.org/10.1182/blood-2016-01-688226

32. Cicalese MP, Ferrua F, Castagnaro L, Rolfe K, De Boever E, Reinhardt RR, et al. Gene therapy for adenosine deaminase deficiency: a comprehensive evaluation of shortand medium-term safety. Mol Ther. 2018;26(3):917–31. https://doi.org/10.1016/j.ymthe.2017.12.022

33. Assessment report. Zalmoxis (EMA/CHMP/589978/2016). EMA; 2016.

34. Li HW, Sykes M. Emerging concepts in haematopoietic cell transplantation. Nat Rev Immunol. 2012;12(6):403–16. https://doi.org/10.1038/nri3226

35. Atilla E, Atilla PA, Bozdağ SC, Demirer T. A review of infectious complications after haploidentical hematopoietic stem cell transplantations. Infection. 2017;45(4):403–11. https://doi.org/10.1007/s15010-017-1016-1

36. Greco R, Oliveira G, Stanghellini MT, Vago L, Bondanza A, Peccatori J, et al. Improving the safety of cell therapy with the TK-suicide gene. Front Pharmacol. 2015;6:95. https://doi.org/10.3389/fphar.2015.00095

37. Ciceri F, Bonini C, Stanghellini MT, Bondanza A, Traversari C, Salomoni M, et al. Infusion of suicide-gene-engineered donor lymphocytes after family haploidentical haemopoietic stemcell transplantation for leukaemia (the TK007 trial): a non-randomised phase I-II study. Lancet Oncol. 2009;10(5):489–500. https://doi.org/10.1016/S1470-2045(09)70074-9

38. Summary basis for regulatory action — KYMRIAH. FDA; 2018. Available from: https://www.fda.gov/downloads/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/UCM606836.pdf

39. Package insert — KYMRIAH. FDA. Available from: https://www.fda.gov/downloads/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/UCM573941.pdf

40. Maude SL, Pulsipher MA, Boyer MW, Grupp SA, Davies SM, Phillips CL, et al. Efficacy and safety of CTL019 in the first US phase II multicenter trial in pediatric relapsed/refractory acute lymphoblastic leukemia: results of an interim analysis. Blood. 2016;128(22):2801. Available from: http://www.bloodjournal.org/content/128/22/2801/tab-figures-only

41. Study of Efficacy and Safety of CTL019 in Adult DLBCL Patients (JULIET) (NCT02445248). Available from: https://clinicaltrials.gov/ct2/show/NCT02445248

42. Schuster SJ, Bishop MR, Tam C, Waller EK, Borchmann P, Mcguirk J, et al. Global pivotal phase 2 trial of the CD19-targeted therapy CTL019 in adult patients with relapsed or refractory (r/r) diffuse large B-cell lymphoma (DLBCL) — an interim analysis. Hematological Oncology. 2017;35(S2):27. https://doi.org/10.1002/hon.2437_6

43. Summary basis for regulatory action — YESCARTA. FDA; 2017. Available from: https://www.fda.gov/downloads/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/UCM584335.pdf

44. Package insert — YESCARTA. FDA. Available from: https://www.fda.gov/downloads/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/UCM581226.pdf

45. Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377(26):2531–44. https://doi.org/10.1056/NEJMoa1707447

46. Wilkins O, Keeler AM, Flotte TR. CAR T-сell therapy: progress and prospects. Hum Gene Ther Methods. 2017;28(2):61–6. https://doi.org/10.1089/hgtb.2016.153

47. Zhou X, Di Stasi A, Tey S-K, Krance RA, Martinez C, Leung KS, et al. Long-term outcome and immune reconstitution after haploidentical stem cell transplant in recipients of allodepleted-T-cells expressing the inducible Caspase-9 safety transgene. Blood. 2014;123(25):3895–905. https://doi.org/10.1182/blood-2014-01-551671.


Review

For citations:


Goryaev A.A., Savkina M.V., Mefed K.M., Bondarev V.P., Merkulov V.A., Tarasov V.V. Genome-Editing and Biomedical Cell Products: Current State, Safety and Efficacy. BIOpreparations. Prevention, Diagnosis, Treatment. 2018;18(3):140-149. (In Russ.) https://doi.org/10.30895/2221-996X-2018-18-3-140-149

Views: 1460


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2221-996X (Print)
ISSN 2619-1156 (Online)