Preview

БИОпрепараты. Профилактика, диагностика, лечение

Расширенный поиск

Применение методов цитогенетического анализа при оценке качества клеточных линий в составе биомедицинских клеточных продуктов

https://doi.org/10.30895/2221-996X-2018-18-1-25-32

Полный текст:

Аннотация

Биомедицинские клеточные продукты (БМКП) — новая группа препаратов, основанных на применении клеточных линий различного происхождения для лечения широкого спектра  заболеваний, в том числе в сфере регенеративной медицины. Контроль качества клеточного компонента таких препаратов является важной задачей на всех стадиях разработки и производства БМКП. Большое внимание должно уделяться подтверждению безопасности  препаратов в силу ряда их особенностей и возможности возникновения побочных эффектов  при их применении, в том числе риска развития онкологических заболеваний. Возможной  причиной канцерогенеза может стать генетическая нестабильность клеточного компонента БМКП. Для выявления генетической нестабильности клеток, входящих в состав  БМКП, на хромосомном уровне возможно применение ряда цитогенетических методов.  Подтверждение наличия в клетках неизменного кариотипа и идентификацию различных  хромосомных аномалий возможно осуществлять с помощью как классических  цитогенетических методов анализа, например дифференциальное окрашивание хромосом, так и с помощью молекулярно-цитогенетических методов, основанных на применении флуоресцентной гибридизации in situ. При комплексном использовании этих  методов возможно получение достоверной оценки генетической стабильности и косвенного  доказательства отсутствия малигнизации клеточной линии в составе БМКП.

Об авторах

О. А. Рачинская
Федеральное государственное бюджетное учреждение «Научный центр экспертизы средств медицинского применения» Министерства здравоохранения Российской Федерации
Россия

Эксперт 1 категории лаборатории биомедицинских клеточных продуктов Испытательного центра экспертизы качества лекарственных средств, канд. биол. наук

Российская Федерация, 127051, Москва, Петровский бульвар, д. 8, стр. 2



В. А. Меркулов
Федеральное государственное бюджетное учреждение «Научный центр экспертизы средств медицинского применения» Министерства здравоохранения Российской Федерации
Россия

Заместитель генерального директора по экспертизе лекарственных средств, д-р  мед. наук, профессор

Российская Федерация, 127051, Москва, Петровский бульвар, д. 8, стр. 2



Список литературы

1. Федеральный закон от 23 июня 2016 г. № 180-ФЗ «О биомедицинских клеточных продуктах».

2. Mason C, Manzotti E. Regen: The Industry Responsible for Cell-Based Therapies. Regen Med. 2009; 4(6): 783–5.

3. Мельникова ЕВ, Меркулова ОВ, Рачинская ОА, Чапленко АА, Меркулов ВА, Олефир ЮВ и др. Современные подходы к проведению оценки качества препаратов для клеточной терапии. Биофармацевтический журнал 2016; 8(4): 35–46.

4. Duesberg P, Li R. Multistep Carcinogenesis: a Chain Reaction of Aneuploidizations. Cell Cycle 2003; 2(3): 202–10.

5. Rubio D, Garcia-Castro J, Martín MC, de la Fuente R, Cigudosa JC, Lloyd AC, Bernad A. Spontaneous Human Adult Stem Cell Transformation. Cancer Res. 2005; 65(8): 3035–9.

6. Бочков НП, Никитина ВА, Рослова ТА, Чаушев ИН, Якушина ИИ. Клеточная терапия наследственных болезней. Вестник РАМН 2008; (10): 20–8.

7. Goldring CE, Duffy PA, Benvenisty N, Andrews PW, Ben-David U, Eakins R, et al. Assessing the Safety of Stem Cell Therapeutics. Cell Stem Cell 2011; 8(6): 618–28.

8. Geron. About GRNOPC1. Preclinical Safety Studies: Animal Toxicology Testing of GRNOPC1. Available from: http://ir.geron.com/phoenix.zhtml?c=67323&p=irolnewsArticle&ID=1636251

9. ALLOCORD (HPC Cord Blood). Package Insert. Available from: https://www.fda.gov/downloads/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/UCM354696.pdf

10. LAVIV (Azficel-T). Package Insert and Patient Information Sheet. Available from: https://www.fda.gov/downloads/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/UCM260489.pdf

11. CLEVECORD (HPC Cord Blood). Package Insert. Available from: https://www.fda.gov/downloads/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/UCM519084.pdf

12. HEMACORD (HPC, cord blood). Package Insert. Available from: https://www.fda.gov/downloads/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/UCM279612.pdf

13. DUCORD (HPC Cord Blood). Package Insert with Infusion Instructions. Available from: https://www.fda.gov/downloads/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/UCM322732.pdf

14. HPC, Cord Blood. Package Insert. Available from: https://www. fda.gov/downloads/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProdu cts/UCM305761.pdf

15. Epicel (Cultured Epidermal Autografts). Directions for Use. Available from: https://www.fda.gov/downloads/BiologicsBloodVaccines/BloodBloodProducts/ApprovedProducts/PremarketApprovalsPMAs/UCM538555.pdf

16. Dermagraft (Interactive Wound Dressing). Summary of Safety and Effectiveness Data. Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf/p000036b.pdf

17. Orcel (Bilayered Cellular Matrix) (Interactive Wound and Burn Dressing). Summary of Safety and Effectiveness Data. Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf/p010016b.pdf

18. Holoclar (ex vivo Expanded Autologous Human Corneal Epithelial Cells Containing Stem Cells). EPAR Summary for the Public. EMEA/H/C/002450. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Summary_for_the_public/human/002450/WC500183406.pdf

19. Guidance for Industry: Preclinical Assessment of Investigational Cellular and Gene Therapy Products. Food and Drug Administration 2013. Available from: https://www.fda.gov/downloads/BiologicsBloodVaccines/GuidanceComplianceRegulatoryIn formation/Guidances/CellularandGeneTherapy/UCM376521.pdf

20. Guideline on Human Cell-Based Medicinal Products (EMEA/CHMP/410869/2006). Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003894.pdf

21. Guidance for FDA Reviewers and Sponsors. Content and Review of Chemistry, Manufacturing, and Control (CMC). Information for Human Somatic Cell Therapy Investigational New Drug Applications (INDs). Food and Drug Administration 2008. Available from: https://www.fda.gov/downloads/biologicsbloodvaccines/guidancecomplianceregulatoryinf ormation/guidances/xenotransplantation/ucm092705.pdf

22. Carpenter MK, Frey-Vasconcells J, Rao MS. Developing Safe Therapies from Human Pluripotent Stem Cells. Nat Biotechnol. 2009; 27(7): 606–13.

23. Commission Directive 2009/120/EC of 14 September 2009 Amending Directive 2001/83/EC of the European Parliament and of the Council on the Community Code Relating to medicinal products for human use as Regards Advanced Therapy Medicinal Products. Available from: https://ec.europa.eu/health//sites/health/files/files/eudralex/vol- 1/dir_2009_120/dir_2009_120_en.pdf

24. Committee for Proprietary Medicinal Products (CPMP). Note for Guidance on the Quality, Preclinical and Clinical Aspects of Gene Transfer Medicinal Products (CPMP/BWP/3088/99). Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/10/WC500003987.pdf

25. Expert Committee on Biological Standardization. Recommendations for the Evaluation of Animal Cell Cultures as Substrates for the Manufacture of Biological Medicinal Products and for the Characterization of Cell Banks. Available from: http://www.who.int/biologicals/Cell_Substrates_clean_version_18_April.pdf

26. ICH Topic Q 5 D. Quality of Biotechnological Products: Derivation and Characterization of Cell Substrates Used for Production of Biotechnological/Biological Products (CPMP/ICH/294/95). Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003280.pdf

27. Coecke S, Balls M, Bowe G, Davis J, Gstraunthaler G, Hartung T, et al. Guidance on Good Cell Culture Practice. A Report of the Second ECVAM Task Force on Good Cell Culture Practice. Altern Lab Anim. 2005; 33(3): 261–87.

28. Consensus Guidance for Banking and Supply of Human Embryonic Stem Cell Lines for Research Purposes. Stem Cell Rev. 2009; 5(4): 301–14.

29. Астрелина ТА. Банк стволовых клеток: от науки к практике. М.: ЦНТБ ПП; 2015.

30. McGowan-Jordan J, Simons A, Schmid M, eds. An International System for Human Cytogenomic Nomenclature (ISCN). Basel, Freiburg: Karger; 2016.

31. Hayflick L. The Limited In Vitro Lifetime of Human Diploid Cell Strains. Exp Cell Res. 1965; 37: 614–36.

32. Мамаева СЕ. Закономерности кариотипической эволюции клеток в культуре. Цитология 1996; 38(8): 787–814.

33. Tolar J, Nauta AJ, Osborn MJ, Panoskaltsis Mortari A, McElmurry RT, Bell S. Sarcoma Derived from Cultured Mesenchymal Stem Cells. Stem Cells 2007; 25(2); 371–9.

34. Borghesi A, Avanzini MA, Novara F, Mantelli M, Lenta E, Achille V, et al. Genomic Alterations in Human Umbilical Cord-Derived Mesenchymal Stromal Cells Call for Stringent Quality Control Before Any Possible Therapeutic Approach. Cytotherapy 2013; 15(11): 1362–73.

35. Ye CJ, Liu G, Bremer SW, Heng HH. The Dynamics of Cancer Chromosomes and Genomes. Cytogenet Genome Res. 2007; 118(2–4): 237–46.

36. Maitra A, Arking DE, Shivapurkar N, Ikeda M, Stastny V, Kassauei K, et al. Genomic Alterations in Cultured Human Embryonic Stem Cell. Nat Genet. 2005; 37(10): 1099–103.

37. Richards M, Tan S, Fong CY, Biswas A, Chan WK, Bongso A. Comparative Evalution of Various Human Feeders for Prolonged Undifferentiated Growth of Human Embryonic Stem Cells. Stem Cell 2003; 21(5): 546–56.

38. Skottman H, Hovatta O. Culture Conditions for Human Embryonic Stem Cells. Reproduction 2006; 132(5): 691–8.

39. Anisimov SV, Morizane A, Correia AS. Risks and Mechanisms of Oncological Disease Following Stem Cell Transplantation. Stem Cell Rev. 2010; 6(3): 411–24.

40. Ben-David U, Mayshar Y, Benvenisty N. Large-scale Analysis Reveals Acquisition of Lineage-Specific Chromosomal Aberrations in Human Adult Stem Cells. Cell Stem Cell 2011; 9(2): 97–102.

41. Bernardo ME, Zaffaroni N, Novara F, Cometa AM, Avanzini MA, Moretta A. Human Bone Marrow Derived Mesenchymal Stem Cell do not Undergo Transformation after Long-Term in vitro Culture and Do Not Exhibit Telomere Maintenance Mechanisms. Cancer Res. 2007; 67(19): 9142–9.

42. Домнина АП, Фридлянская ИИ, Земелько ВИ, Пуговкина НА, Ковалева ЗВ, Зенин ВВ и др. Мезенхимные стволовые клетки эндометрия человека при длительном культивировании не подвергаются спонтанной трансформации. Цитология 2013; 55(1): 69–74.

43. Бочков НП, Воронина ЕС, Катосова ЛД, Никитина ВА. Цитогенетическое исследование мультипотентных мезенхимных стромальных клеток человека в процессе культивирования. Медицинская генетика 2009; 8(12): 3–6.

44. Tarte K, Gaillard J, Lataillade JJ, Fouillard L, Becker M, Mossafa H, et al. Clinical-Grade Production of Human Mesenchymal Stromal Cells: Occurrence of Aneuploidy without Transformation. Blood 2010; 115(8): 1549–53.

45. Попов БВ, Петров НС, Михайлов ВМ, Томилин АН, Алексеенко ЛЛ, Гринчук ТМ, Зайчик АМ. Спонтанная трансформация и иммортализация мезенхимных стволовых клеток в культуре in vitro. Цитология 2009; 51(2): 91–102.

46. Pan Q, Fouraschen SM, de Ruiter PE, Dinjens WN, Kwekkeboom J, Tilanus HW, van der Laan LJ. Detection of Spontaneous Tumorigenic Transformation during Culture Expansion of Human Mesenchymal Stromal Cells. Exp Biol Med (Maywood). 2014; 239(1): 105–15.

47. Barkholt L, Flory E, Jekerle V, Lucas-Samuel S, Ahnert P, Bisset L, et al. Risk of Tumorigenicity in Mesenchymal Stromal Cell-Based Therapies — Bridging Scientific Observations and Regulatory Viewpoints. Cytotherapy. 2013; 15(7): 753–9.

48. Полянская ГГ. Проблема нестабильности генома культивируемых стволовых клеток человека. Цитология 2014; 56(10): 697–707.

49. Wang Y, Huso DL, Harrington J, Kellner J, Jeong DK, Turney J, McNiece IK. Outgrowth of a Transformed Cell Population Derived from Normal Human BM Mesenchymal Stem Cell Culture. Cytotherapy 2005; 7(6): 509–19.

50. Peterson SE, Loring JF. Genomic Instability in Pluripotent Stem Cells: Implications for Clinical Applications. J Biol Chem. 2014; 289(8): 4578–84.

51. Мамева СЕ, Литвинчук ЛФ, Пинаев ГП. Закономерности кариотипической изменчивости в перевиваемых клеточных линиях человека. ДАН СССР 1983; 270(2): 456–8.

52. Mамаева СЕ. Атлас хромосом постоянных клеточных линий человека и животных. М.: Науч. мир; 2002.

53. Baronchelli S, Bentivegna A, Redaelli S, Riva G, Butta V, Paoletta L, et al. Delineating the Cytogenomic and Epigenomic Landscapes of Glioma Stem Cell Lines. PloS One 2013; 8(2): e57462.

54. Яковлева ТК, Ярцева НМ, Турилова ВИ. Прогрессия кариотипа клеточных линий острого миелобластного лейкоза человека. Клеточные культуры 2011; 27: 34–45.

55. Kowalczyk M, Srebniak M, Tomaszewska A. Chromosome Abnormalities without Phenotypic Consequences. J Appl Genet. 2007; 48(2): 157–66.

56. Laurent LC, Ulitsky I, Slavin I, Tran H, Schork A, Morey R, et al. Dynamic Changes in the Copy Number of Pluripotency and Cell Proliferation Genes in Human ESCs and iPSCs during Reprogramming and Time in Culture. Cell Stem Cell 2011; 8(1): 106–18.

57. Comings DE, Avelino E, Okada TA, Wyandt HE. The Mechanism of C- and G-Banding of Chromosomes. Exp Cell Res. 1973; 77(1): 469–83.

58. Sumner AT. Chromosome Banding and Identification Absorption Staining. In: Chromosome Analysis Protocols. Methods in Molecular Biology. Gosden GR, ed. Totowa: Humana Press; 1994. P. 59–81.

59. Speicher MR, Carter NP. The New Cytogenetics: Blurring the Boundaries with Molecular Biology. Nat Rev Genet. 2005; 6(10): 782–92.

60. Meisner LF, Johnson JA. Protocols for Cytogenetic Studies of Human Embryonic Stem Cells. Methods 2008; 45(2): 133–41.

61. Caspersson T, Zech L, Johansson C, Modest EJ. Identification of Human Chromosomes by DNA-Binding Fluorescent Agents. Chromosoma 1970; 30(2): 215–27.

62. Schweizer D, Ambros PF. Chromosome Banding. Stain Combinations for Specific Regions. Methods Mol Biol. 1994; 29: 97–112.

63. Schweizer D. Reverse Fluorescent Chromosome Banding with Chromomycin and DAPI. Chromosoma 1976; 58(4): 307–24.

64. Tobey RA, Crissman HA. Unique Techniques for Cell Analysis Utilizing Mithramycin and Flow Microfluorometry. Exp Cell Res. 1975; 93(1): 235–9.

65. Lin CC, Van de Sande JH. Differential Fluorescent Staining of Human Chromosomes with Daunomycin and Adriamycin — the D-Bands. Science 1975; 190(4209): 61–3.

66. Anderson R. Multiplex Fluorescence In Situ Hybridization (M-FISH). Methods Mol Biol. 2010; 659: 83–97.

67. du Manoir S, Speicher MR, Joos S, Schröck E, Popp S, Döhner H, et al. Detection of Complete and Partial Chromosome Gains and Losses by Comparative Genomic In Situ Hybridization. Hum Genet. 1993; 90(6): 590–610.

68. Бочков НП. Клиническая генетика. М.: ГЭОТАР-МЕД; 2002.

69. Schmid W. The Micronucleus Test. Mutat Res. 1975; 31(1): 9–15.

70. Olive PL, Banáth JP. The Comet Assay: a Method to Measure DNA Damage in Individual Cells. Nat Protoc. 2006; 1(1): 23–9.

71. Theisen A. Microarray-Based Comparative Genomic Hybridization (aCGH). Nature Education 2008; 1(1): 45.

72. Kim S, Misra A. SNP Genotyping: Technologies and Biomedical Applications. Annu Rev Biomed Eng. 2007; 9: 289–320.


Для цитирования:


Рачинская О.А., Меркулов В.А. Применение методов цитогенетического анализа при оценке качества клеточных линий в составе биомедицинских клеточных продуктов. БИОпрепараты. Профилактика, диагностика, лечение. 2018;18(1):25-32. https://doi.org/10.30895/2221-996X-2018-18-1-25-32

For citation:


Rachinskaya O.A., Merkulov V.A. Use of Cytogenetic Analysis Methods for Assessing the Quality of Cell Lines in Biomedical Cell Products. BIOpreparations. Prevention, Diagnosis, Treatment. 2018;18(1):25-32. (In Russ.) https://doi.org/10.30895/2221-996X-2018-18-1-25-32

Просмотров: 137


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2221-996X (Print)
ISSN 2619-1156 (Online)