IPEHAPATЫ ПРОФИЛАКТИКА, ДИАГНОСТИКА, ЛЕЧЕНИЕ

Рецензируемый научно-практический журнал Федерального государственного бюджетного учреждения «Научный центр экспертизы средств медицинского применения» Министерства здравоохранения Российской Федерации

Том 18, № Январь – март 2018

Применение проточной цитометрии для оценки качества биомедицинских клеточных продуктов

Применение методов цитогенетического анализа при оценке качества клеточных линий в составе биомедицинских клеточных продуктов

Редакция журнала не несет ответственности за содержание рекламных материалов.

Точка зрения авторов может не совпадать с мнением редакции журнала.

К публикации принимаются только статьи, подготовленные в соответствии с правилами для авторов, размещенными на сайте журнала.

Все статьи проходят рецензирование двумя рецензентами. Используется модель двойного слепого рецензирования.

Плата за публикацию статьи и рецензирование рукописи не взимается. Ускоренная публикация не допускается.

Труды заочных конференций не публикуются.

Рецензируемый научно-практический журнал

Том 18, № 1

Январь – март 2018

Л. А. Тарасевич

«БИОпрепараты. Профилактика, диагностика, лечение» — журнал ФГБУ «НЦЭСМП» Минздрава России. Создан в 2001 г. как периодическое научное издание Государственного научно-исследовательского института стандартизации и контроля медицинских биологических препаратов имени Л.А. Тарасевича. В журнале рассматриваются вопросы разработки, стандартизации, контроля качества, производства и применения медицинских биологических препаратов, а также диагностики инфекционных заболеваний человека. В журнале публикуются обзорные и оригинальные статьи по результатам иммунобиологических, биотехнологических и генетических исследований, соответствующих медицинским и биологическим отраслям науки. Включен в наукометрическую базу данных Science Index.

ГЛАВНЫЙ РЕДАКТОР

Олефир Юрий Витальевич, доктор медицинских наук, старший научный сотрудник ЗАМЕСТИТЕЛИ ГЛАВНОГО РЕДАКТОРА

Меркулов Вадим Анатольевич, доктор медицинских наук, профессор **Бондарев Владимир Петрович,** доктор медицинских наук, профессор

ОТВЕТСТВЕННЫЙ СЕКРЕТАРЬ

Климов Владимир Иванович, кандидат медицинских наук, старший научный сотрудник

НАУЧНЫЕ РЕДАКТОРЫ

Гойкалова Ольга Юрьевна,

кандидат биологических наук, доцент

Лебединская Елена Владимировна,

кандидат биологических наук

РЕДАКЦИОННАЯ КОЛЛЕГИЯ

Авдеева Жанна Ильдаровна, доктор медицинских наук, профессор (Москва, Россия)

Бакулин Михаил Константинович, доктор

медицинских наук, профессор (Киров, Россия)

Борисевич Игорь Владимирович, доктор

медицинских наук, профессор (Москва, Россия)

Воробьева Мая Сергеевна, доктор медицинских наук, профессор (Москва, Россия)

Дармов Илья Владимирович, доктор медицинских наук, профессор (Киров, Россия)

Иванов Вячеслав Борисович, доктор медицинских наук, профессор (Москва, Россия)

Игнатьев Георгий Михайлович, доктор медицинских наук, профессор (Москва, Россия)

Леви Диана Тимофеевна, доктор медицинских наук, профессор (Москва, Россия)

Медуницын Николай Васильевич, доктор медицинских наук, профессор, академик РАН (Москва, Россия)

Мовсесянц Арташес Авакович, доктор медицинских наук, профессор (Москва, Россия)

Мосягин Вячеслав Дмитриевич, доктор медицинских наук, профессор (Москва, Россия)

Пащенко Юрий Иванович, доктор биологических наук, профессор (Сергиев Посад, Московская область, Россия)

Хамитов Равиль Авгатович, доктор медицинских наук, профессор (Вольгинский, Владимирская область, Россия)

РЕДАКТОР Шестакова Алина Павловна

РЕДАКЦИОННЫЙ СОВЕТ

Амвросьева Тамара Васильевна, доктор медицинских наук, профессор (Минск, Республика Беларусь)

Борисевич Сергей Владимирович, доктор

биологических наук, профессор, член-корр. РАН (Сергиев Посад, Московская область, Россия)

Брико Николай Иванович, доктор медицинских наук, профессор, академик РАН (Москва, Россия)

Волчков Виктор Евгеньевич, доктор медицинских наук, профессор (Лион, Франция)

Гинцбург Александр Леонидович, доктор биологических наук, профессор, академик РАН (Москва, Россия)

Дятлов Иван Алексеевич, доктор медицинских наук, профессор, академик РАН

(Оболенск, Московская область, Россия)

Зверев Виталий Васильевич, доктор биологических наук, профессор, академик РАН (Москва, Россия)

Кутырев Владимир Викторович, доктор медицинских наук, профессор, академик РАН (Саратов, Россия)

Львов Дмитрий Константинович, доктор медицинских наук, профессор, академик РАН (Москва, Россия)

Михайлов Михаил Иванович, доктор медицинских наук, профессор, член-корр. РАН (Москва, Россия) Покровский Валентин Иванович, доктор медицинских наук, профессор, академик РАН (Москва,

медицинских наук, профессор, академик РАН (москва, Россия)

Савченко Валерий Григорьевич, доктор медицинских

наук, профессор, академик РАН (Москва, Россия)

Учайкин Василий Федорович, доктор медицинских наук, профессор, академик РАН (Москва, Россия)

Хаитов Рахим Мусаевич, доктор медицинских наук, профессор, академик РАН (Москва, Россия)

Чумаков Константин Михайлович, доктор биологических наук (Силвер-Спринг, Мэриленд, США)

Peer-reviewed scientific and practical journal

Volume 18, No. 1

January – March 2018

«BIOpreparations. Prevention, Diagnosis, Treatment» is a journal of the FSBI «SCEEMP» of the Ministry of Health of Russia. It was established in 2001 as a scientific publication of the L.A. Tarasevich State Scientific Research Institute for Standardisation and Control of Biological Medicinal Products. The journal covers issues of development, standardisation, quality control, manufacture and use of biological medicinal products, as well as diagnosis of human infectious diseases. It publishes reviews and original articles based on results of immunobiological, biotechnological and genetic research in medical and biological branches of science. The journal is included in the Science Index scientometric database.

L. A. Tarasevich

EDITOR-IN-CHIEF

Yuri V. Olefir, Doctor of Medical Sciences, Senior Research Associate

DEPUTY EDITORS-IN-CHIEF

Vadim A. Merkulov. Doctor of Medical Sciences. Professor Vladimir P. Bondarev, Doctor of Medical Sciences, Professor

EXECUTIVE EDITOR

Vladimir I. Klimov, Candidate of Medical Sciences, Senior Research Associate

SCIENCE EDITORS

Olga Yu. Goykalova,

Candidate of Biological Sciences, Assistant Professor

Elena V. Lebedinskaya,

Candidate of Biological Sciences

EDITORIAL BOARD

Zhanna I. Avdeeva, Doctor of Medical Sciences, Professor (Moscow, Russia)

Mikhail K. Bakulin, Doctor of Medical Sciences, Professor (Kirov, Russia)

Igor V. Borisevich, Doctor of Medical Sciences, Professor (Moscow, Russia)

Maya S. Vorobieva, Doctor of Medical Sciences, Professor (Moscow, Russia)

Ilya V. Darmov, Doctor of Medical Sciences, Professor (Kirov, Russia)

Vyacheslav B. Ivanov, Doctor of Medical Sciences, Professor (Moscow, Russia)

Georgy M. Ignatyev, Doctor of Medical Sciences, Professor (Moscow, Russia)

Diana T. Levi, Doctor of Medical Sciences, Professor (Moscow, Russia)

Nikolay V. Medunitsyn, Doctor of Medical Sciences, Professor, Academician of the RAS (Moscow, Russia)

Artashes A. Movsesyants, Doctor of Medical Sciences, Professor (Moscow, Russia)

Vyacheslav D. Mosyagin, Doctor of Medical Sciences, Professor (Moscow, Russia)

Yuri I. Pashchenko, Doctor of Biological Sciences, Professor (Sergiev Posad, Moscow Region, Russia) Ravil A. Khamitov, Doctor of Medical Sciences, Professor (Volginsky, Vladimir Region, Russia)

EDITOR

Alina P. Shestakova

EDITORIAL COUNCIL

Tamara V. Amvrosyeva, Doctor of Medical Sciences, Professor (Minsk, Republic of Belarus)

Sergey V. Borisevich, Doctor of Biological Sciences, Professor, Corresponding Member of the RAS (Sergiev Posad, Moscow Region, Russia)

Nikolay I. Briko, Doctor of Medical Sciences, Professor, Academician of the RAS (Moscow, Russia)

Viktor E. Volchkov, Doctor of Medical Sciences, Professor (Lyon, France)

Aleksandr L. Gintsburg, Doctor of Biological Sciences, Professor, Academician of the RAS (Moscow, Russia) Ivan A. Dyatlov, Doctor of Medical Sciences, Professor,

Academician of the RAS (Obolensk, Moscow Region, Russia)

Vitaly V. Zverev, Doctor of Biological Sciences, Professor, Academician of the RAS (Moscow, Russia)

Vladimir V. Kutyrev, Doctor of Medical Sciences, Professor, Academician of the RAS (Saratov, Russia)

Dmitry K. Lvov, Doctor of Medical Sciences, Professor, Academician of the RAS (Moscow, Russia)

Mikhail I. Mikhaylov, Doctor of Medical Sciences, Professor, Corresponding Member of the RAS (Moscow, Russia)

Valentin I. Pokrovsky, Doctor of Medical Sciences, Professor, Academician of the RAS (Moscow, Russia)

Valery G. Savchenko, Doctor of Medical Sciences, Professor, Academician of the RAS (Moscow, Russia)

Vasily F. Uchaykin, Doctor of Medical Sciences, Professor, Academician of the RAS (Moscow, Russia)

Rakhim M. Khaitov, Doctor of Medical Sciences, Professor, Academician of the RAS (Moscow, Russia)

Konstantin M. Chumakov, Doctor of Biological Sciences (Silver Spring, Maryland, USA)

Л. А. Тарасевич

Рецензируемый научно-практический журнал

СОДЕРЖАНИЕ Обзоры

Испытание на стерильность иммунобиологических лекарственных препаратов в России. История вопроса и современные требования С. М. Суханова, З. Е. Бердникова, Н. Е. Захарова, В. А. Меркулов
Применение проточной цитометрии для оценки качества биомедицинских клеточных продуктов Г. А. Трусов, А. А. Чапленко, И. С. Семенова, Е. В. Мельникова, Ю. В. Олефир
Применение методов цитогенетического анализа при оценке качества клеточных линий в составе биомедицинских клеточных продуктов О. А. Рачинская, В. А. Меркулов
Анализ эффективности и безопасности вакцин для профилактики клещевого энцефалита Т.Ю.Козлова, Л.М.Хантимирова, А.В.Рукавишников, В.А.Шевцов
Эффективность и безопасность вакцин для профилактики холеры А. А. Горяев, Л. В. Саяпина, Ю. И. Обухов, В. П. Бондарев
Национальная стратегия Российской Федерации по предупреждению распространения устойчивости патогенных микроорганизмов к антимикробным препаратам: трудности и перспективы сдерживания одной из глобальных биологических угроз XXI века Д. С. Давыдов
Оригинальные статьи
Оценка иммунобиологических свойств вакцинных штаммов <i>Bordetella pertussis</i> И. А. Алексеева, О. В. Перелыгина
Юбилей
Юрий Иванович Обухов (к 60-летию со дня рождения)

Свидетельство о регистрации средства массовой информации: ПИ № ФС77-53128 от 14.03.2013

Учредитель:

Федеральное государственное бюджетное учреждение «Научный центр экспертизы средств медицинского применения» Министерства здравоохранения Российской Федерации

Адрес редакции: 127051, Москва, Петровский 6-р, д. 8, стр. 2 **E-mail:** biopreparaty@expmed.ru

Телефон: +7 (495) 234-61-04, доб. 63-35, 63-42, 63-08, 63-36 Журнал включен в наукометрическую базу данных

Science Index

Издатель: 000 «Ваше Цифровое Издательство»

Юридический адрес: 109263, Москва, ул. Шкулева, д. 9, к. 2

E-mail: isupport@neicon.ru

Телефон/факс: +7 (499) 754-99-93

Сайт: http://elpub.ru

Подписано в печать: 14.02.2018 Формат 60×90/8. Усл. печ. л. 8,25 Бумага мелованная. Печать офсетная

L. A. Tarasevich

Peer-reviewed scientific and practical journal

CONTENTS

Reviews

Sterility Testing of Immonobiological Medicinal Products in Russia. Historical Background and Current Requirements S. M. Sukhanova, Z. E. Berdnikova, N. E. Zakharova, V. A. Merkulov	5
Use of Flow Cytometry for Quality Evaluation of Biomedical Cell Products G. A. Trusov, A. A. Chaplenko, I. S. Semenova, E. V. Melnikova, Yu. V. Olefir	6
Use of Cytogenetic Analysis Methods for Assessing the Quality of Cell Lines in Biomedical Cell Products O. A. Rachinskaya, V. A. Merkulov	5
Analysis of Efficacy and Safety of Tick-Borne Encephalitis Vaccines T. Yu. Kozlova, L. M. Khantimirova, A. V. Rukavishnikov, V. A. Shevtsov	3
Efficacy and Safety of Cholera Vaccines A. A. Goryaev, L. V. Sayapina, Yu. I. Obukhov, V. P. Bondarev	2
The National Strategy of the Russian Federation for Preventing the Spread of Antimicrobial Resistance: Challenges and Prospects of Controlling One of the Global Biological Threats of the 21st Century D. S. Davydov	0
Original Articles	
Evaluation of Immunobiological Properties of <i>Bordetella pertussis</i> Vaccine Strains I. A. Alekseeva, O. V. Perelygina	7
Anniversary	
Yuri I. Obukhov (on the 60th Anniversary)	5

Mass media registration certificate: ПИ № ФС77-53128 of March 14, 2013

Founder: Federal State Budgetary Institution

«Scientific Centre for Expert Evaluation of Medicinal Products» of the Ministry of Health of the Russian Federation

Postal address: 8/2 Petrovsky boulevard, Moscow 127051

E-mail: biopreparaty@expmed.ru

Phone: +7 (495) 234-61-04, доб. 63-35, 63-42, 63-08, 63-36

The journal is included in the Science Index scientometric

database

Publisher: «Your Digital Publishing» LLC

Registered office: 9/2 Shkuleva street, Moscow 109263

E-mail: isupport@neicon.ru Phone/fax: +7 (499) 754-99-93 Website: http://elpub.ru

Passed for printing: February 14, 2018

Format 60×90/8. Conventional printed sheets: 8,25

Enamel-paper. Offset printing

© FSBI «SCEEMP» of the Ministry of Health of Russia, 2018

УДК 615.076 DOI: 10.30895/2221-996X-2018-18-1-5-15 ШИФР 03.02.03 СПЕЦИАЛЬНОСТЬ Микробиология

Испытание на стерильность иммунобиологических лекарственных препаратов в России. История вопроса и современные требования

* С. М. Суханова, З. Е. Бердникова, Н. Е. Захарова, В. А. Меркулов

Федеральное государственное бюджетное учреждение «Научный центр экспертизы средств медицинского применения» Министерства здравоохранения Российской Федерации, Российская Федерация, 127051, Москва, Петровский бульвар, д. 8, стр. 2

Одним из основных критериев биологической безопасности иммунобиологических препаратов является их стерильность. В статье представлена история разработки в нашей стране методов испытания иммунобиологических препаратов по показателю «Стерильность», начиная с 1961 г. и заканчивая современными требованиями, регламентируемыми Государственной фармакопеей Российской Федерации XIII издания. Детально проанализированы ключевые подходы по совершенствованию оценки качества по данному показателю, в том числе в отношении выбора оптимальных питательных сред и методик проверки их качества, чувствительных тест-штаммов и условий инкубирования, определения количества отбираемых образцов препарата, необходимого для достоверного подтверждения стерильности всей серии (объем выборки), а также по разработке схемы проведения испытания, учитывающей особенности производства и применения иммунобиологических препаратов. Приведена информация о многолетнем опыте использования разработанной в нашей стране схемы испытания стерильности Национальным органом контроля медицинских иммунобиологических препаратов ГИСК им. Л.А. Тарасевича. Представлен анализ современного состояния проблемы гармонизации требований к проведению испытания стерильности иммунобиологических и других лекарственных препаратов, в том числе с ведущими зарубежными фармакопеями, а также перспективы их использования странами — членами Евразийского экономического союза.

Ключевые слова: национальный орган контроля; фармакопея; стерильность; медицинские иммунобиологические препараты; микробиологическая безопасность; мембранная фильтрация; прямой посев; контаминация; мертиолят; оценка качества

Для цитирования: Суханова СМ, Бердникова ЗЕ, Захарова НЕ, Меркулов ВА. Испытание на стерильность иммунобиологических лекарственных препаратов в России. История вопроса и современные требования. БИОпрепараты. Профилактика, диагностика, лечение 2018; 18(1): 5–15. DOI: 10.30895/2221-996X-2018-18-1-5-15

* Контактное лицо: Суханова Светлана Михайловна; SuhanovaSM@expmed.ru

Sterility Testing of Immonobiological Medicinal Products in Russia. Historical Background and Current Requirements

* S. M. Sukhanova, Z. E. Berdnikova, N. E. Zakharov, V. A. Merkulov

Federal State Budgetary Institution «Scientific Centre for Expert Evaluation of Medicinal Products» of the Ministry of Health of the Russian Federation, 8/2 Petrovsky boulevard, Moscow 127051, Russian Federation

Sterility is one of the key parameters of biological safety of immunobiological medicinal products. The article traces the history of the development of sterility test methods for immunobiological medicinal products from as far back as 1961 and up to the current requirements laid down in the State Pharmacopoeia of the Russian Federation, 13th edition. The article provides a detailed analysis of major approaches to the improvement of medicines quality evaluation based on this parameter, namely to the choice of: optimal growth media and methods of their evaluation, sensitive test strains, incubation conditions, the number of test samples (i.e., sample size) required for reliable demonstration of batch sterility; as well as approaches to the development of a test design that would accommodate specific aspects of production and use of immunobiological products. The article dwells upon the longstanding use of the sterility testing scheme developed in the national agency for control of immunobiological products — L.A. Tarasevich State Institute for Standardization and Control of Medicinal Immunobiological Products. The article analyses the current status of harmonisation of requirements for sterility testing of immunobiological products and other groups of medicines with those of the leading world pharmacopoeias, and prospects of using these requirements in the Eurasian Economic Union.

Key words: national control authority; pharmacopoeia; sterility; medicinal immunobiological products; microbiological safety; membrane filtration; direct inoculation; contamination; merthiolate; quality evaluation

For citation: Sukhanova SM, Berdnikova ZE, Zakharova NE, Merkulov VA. Sterility Testing of Immonobiological Medicinal Products in Russia. Historical Background and Current Requirements. BIOpreparations. Prevention, Diagnosis, Treatment 2018; 18(1): 5–15. DOI: 10.30895/2221-996X-2018-18-1-5-15

* Contact person: Sukhanova Svetlana Mikhailovna; SuhanovaSM@expmed.ru

В соответствии с Федеральным законом № 429-ФЗ от 22 декабря 2014 г. иммунобиологические лекарственные препараты (ИЛП) — это лекарственные препараты, предназначенные для формирования активного или пассивного иммунитета, а также диагностики наличия иммунитета или специфического приобретенного иммунологического ответа на аллергизирующие вещества. К ИЛП относятся вакцины, анатоксины, токсины, сыворотки и аллергены [1].

Оборот, качество и безопасность этих препаратов находятся под особым контролем государства практически во всех странах мира и осуществляются отдельно от других фармацевтических препаратов. Государство гарантирует обеспечение современного уровня производства вакцин и предусматривает социальную защиту граждан при возникновении поствакцинальных осложнений. Правовые основы государственной политики в области иммунопрофилактики в России установлены Федеральным законом от 17.09.1998 № 157-ФЗ «Об иммунопрофилактике инфекционных болезней». Все применяемые в Российской Федерации вакцины проходят обязательный контроль качества в установленном порядке [2].

Такой подход обусловлен как особенностями производства ИЛП — использование в качестве сырья биологического материала, асептическое производство, отсутствие финишной стерилизации, — так и вследствие многообразия механизмов действия, необходимостью проведения широкомасштабных, многолетних предрегистрационных исследований с целью дальнейшего их применения не только на больных, но и на здоровых людях, включая детей первых дней жизни [3].

Основными требованиями, предъявляемыми к применяемым практически в любой области медицины биопрепаратам, к которым отнесены ИЛП, является их безопасность и эффективность. Учитывая, что значительная часть ИЛП предназначена для парентерального применения, определяющим критерием их микробиологической безопасности является в первую очередь стерильность. Получение стерильного не контаминированного посторонней микрофлорой медицинского препарата является первостепенной задачей производства, позволяющей исключить дополнительный риск при применении препаратов. вводимых людям. Подтверждением микробиологической безопасности лекарственных препаратов, наряду с соответствием условий их производства требованиям надлежащих практик GMP и GLP, является использование при оценке их качества точных, высокочувствительных и адекватных методов, обеспечивающих достоверные результаты исследований [4].

Цель работы — ретроспективный анализ подходов и изучение современных направлений совершенствования оценки качества ИЛП по показателю «Стерильность».

В задачи исследования входило:

- изучение вопроса становления нормативных требований к проведению испытания ИЛП по показателю «Стерильность»;
- проведение анализа современного состояния проблемы гармонизации требований к проведению испытания иммунобиологических и других лекарственных препаратов, в том числе с требованиями ведущих зарубежных фармакопей, а также перспективы их использования странами членами Евразийского экономического союза.

Основные стандарты, применяемые в фармакопейном анализе при производстве и контроле лекарственных средств (ЛС) ведущими мировыми производителями, регламентируются зарубежными фармакопеями, а в России — Государственной фармакопеей (ГФ) Российской Федерации, которая находится под государственным надзором и имеет юридическую силу [5].

Испытание на стерильность в Великобритании и США впервые было предложено для вакцин, токсинов, сывороток, адре-

налина и инсулина и внесено в фармакопеи в 1932 и 1936 гг. соответственно [6]. В СССР испытание на стерильность путем посева на искусственные питательные среды в аэробных и анаэробных условиях впервые было внесено при самом активном участии профессора Л.А. Тарасевича — председателя Ученого медицинского совета в 1934 г. в ГФ VII издания для противодифтерийной и противостолбнячной лечебных сывороток [7].

Основываясь на международном опыте, правилах и нормах, применяемых в различных странах к биологическим препаратам (БП), в 1959 г. Исследовательской группой Всемирной организации здравоохранения (ВОЗ), в состав которой входил и представитель СССР — доктор Г.В. Выгодчиков из Института эпидемиологии и микробиологии им. Н.Ф. Гамалеи, были впервые сформулированы общие требования к стерильности БП. Было рекомендовано применять эти требования к любым биологическим продуктам, для которых необходимо исключить микробную контаминацию [8].

Теоретически стерильность определялась как отсутствие всех способных к размножению микроорганизмов. В случае если препарат содержал живые микроорганизмы, например так называемые живые вакцины, под стерильностью подразумевали отсутствие контаминации другими микроорганизмами.

Наиболее важными вопросами при разработке методов контроля стерильности лекарственных средств были и остаются: подбор оптимальных питательных сред (ПС) и методик оценки их чувствительности, определение количества образцов исследуемого препарата, необходимого для достоверного подтверждения стерильности всей серии (объем выборки), а также создание самой схемы проведения испытания.

Требования к проведению испытания стерильности вакцин, антитоксических сывороток, анатоксинов и гормональных препаратов в нашей стране впервые были внесены в ІХ выпуск ГФ СССР в 1961 г. В документе приводился перечень ПС и условий инкубации для выявления в этих препаратах бактерий, а также грибов (8 сут при 37 и при 22 °C соответственно). ПС должны были иметь паспорт и быть проверенными на интенсивность роста в них тест-микробов, наименования которых не приводились. В частности, для обнаружения бактерий было рекомендовано использовать несколько ПС, основой которых являлся бульон Хоттингера или Мартена: скошенный агар, бульон с 0,5 % глюкозой и бульон с 0,1 % агаром и кусочками мяса, а для выявления грибов — агар и бульон Сабуро. Образцы препаратов, содержащих в качестве консерванта препараты ртути, дополнительно требовалось высевать по 0,5 мл в 20 мл тиогликолевой среды (ТС) следующего состава: цистин (0,75 г), натрия хлорид (2,5 г), глюкоза (5 г), дрожжевой экстракт (5 г), панкреатический гидролизат казеина (15 г), тиогликолевая кислота (0,3 мл), вода дистиллированная до 1000 мл, рН 7,2-7,4 после стерилизации при 110-112 °С в течение 30 мин. Срок хранения — не более 7 сут. Количество образцов для испытания — не менее трех от каждой бутыли, отобранных в начале, середине и в конце розлива. В случае выявления контаминантов в расфасованной продукции испытания разрешено было повторить на удвоенном количестве образцов. При частичном проросте сред другими видами микробов допускалось исследование препарата в третий раз [9].

По мере накопления данных по оценке стерильности ЛС в 1968 г. в X выпуск ГФ были внесены изменения, в которых отражены особенности проведения испытания для различных групп препаратов — для вакцин и анатоксинов, для кровезаменителей и антибиотиков, а также для эндокринных препаратов. Впервые были определены условия проведения испытания (в специальных боксах, оборудованных подачей стерильного воздуха и оснащенных бактерицидными лампами), увеличено

количество отбираемых на испытание образцов (не менее 4), уменьшено соотношение объема образца и питательной среды (1:20 вместо 1:40). Требования к качеству ПС не изменились [10]. Порядок контроля стерильности каждой группы препаратов был регламентирован специальными инструкциями, утвержденными Министерством здравоохранения СССР, поэтому наименования тест-штаммов для оценки ростовых свойств в фармакопее не приводились. В соответствии с требованиями действовавшей в то время Инструкции по контролю стерильности вакцин, анатоксинов, бактериофагов, лечебных сывороток и аллергенов оценку чувствительности ПС необходимо было проводить с помощью тест-штаммов *Corynebacterium diphteroides* 1921, *Streptococcus hemolyticus* Dick I и *Clostridium oedematiens* тип С № 198 [11].

В состав ТС, рекомендованной для оценки стерильности вакцин, анатоксинов, антитоксических сывороток и антибиотиков, были добавлены агар-агар дальневосточный (0,75 г) и свежеприготовленный раствор резазурина натрия (1:1000, 1,0 мл). Тиогликолевая кислота могла быть заменена тиогликолятом натрия (0,5 г), изменен диапазон рН (7,0–7,2) и режим стерилизации (120 °С в течение 20 мин) [10].

Схема испытания вакцин, анатоксинов и антитоксических сывороток по сравнению с требованиями ГФ СССР IX выпуска также была изменена и включала два этапа:

1-й этап. Посев образцов в жидкую TC в соотношении 1:20 мл и инкубация посевов в течение 5 сут при 37 °C.

2-й этап. Пересев с первой пробирки (по 0,5; 1,0 мл) и инкубация 5 сут:

а) при 37 °C в жидкой TC и средах на основе триптического гидролизата казеина с 0,5 % глюкозой — питательном бульоне

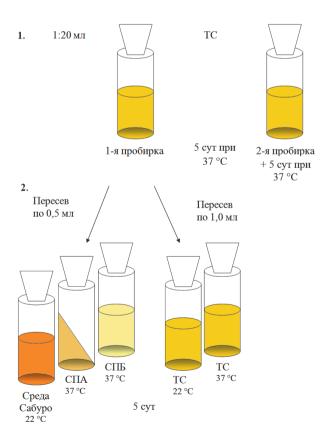


Рис. 1. Схема испытания вакцин, анатоксинов и антитоксических сывороток: ТС — тиогликолевая среда, СПБ — сухой питательный бульон с 0,5 % глюкозой, СПА — сухой питательный агар.

(СПБ) и питательном агаре (СПА) и б) при 22 °С в тиогликолевой и среде Сабуро.

Вторую пробирку первичного посева на ТС выдерживали еще 5 сут при 37 °С. Учет результатов проводили через 10 сут после первичного посева вместо 8 сут (рис. 1).

Для испытания препаратов кровезаменителей и антибиотиков были описаны иные требования [8].

В 1958 г. ВОЗ, практически с самого начала своей деятельности, была определена необходимость разработки международных стандартов для БП. В 1975 г. ввиду улучшения методов испытания стерильности биологических продуктов и усовершенствования мероприятий по контролю Комитетом экспертов ВОЗ по стандартизации БП общие требования к стерильности, опубликованные в 1959 г., были пересмотрены [8]. Обновленные требования относились ко всем иммунологическим БП, т.е. вакцины и сыворотки, используемые для введения человеку, должны быть стерильны. При их подготовке был обобщен международный опыт по данной проблеме, принимались во внимание мнения консультантов, правила и требования, разработанные в ряде стран, а также сведения из опубликованных докладов и рабочих документов ВОЗ. Большая часть этих требований не изменилась до настоящего времени. В документе указывалось, что степень стерильности БП зависит, во-первых, от адекватности контрольных испытаний стерильности препаратов, находящихся в запаянных ампулах или флаконах, достаточное число которых отбирается методом случайной выборки, и, во-вторых, от принятия соответствующих мер предосторожности, касающихся исходных материалов, из которых приготавливается продукт, и технологического процесса. Тесты на стерильность, проводящиеся с приемлемым числом отобранных проб, способны выявить контаминацию только серий с высоким процентом контаминированных образцов. В связи с этим положительный результат испытания не может быть основополагающим критерием стерильности продукта, а должен быть обеспечен процессом производства, включая испытание стерильности на различных стадиях. Отмечалось, что, несмотря на недостатки проведения испытаний стерильности, усилия должны быть направлены на применение наиболее эффективных производственных процессов и на улучшение и утверждение методов испытания стерильности в соответствии с самыми последними достижениями и опытом.

Испытание стерильности в зависимости от требований к отдельным препаратам было разделено на три возможных вида испытаний: 1) присутствие бактерий и грибов; 2) присутствие вирусов и риккетсий и 3) присутствие микоплазм [8]. На сегодняшний день именно первый вид испытаний, позволяющий выявлять рост бактерий и/или грибов в образцах, принимается за испытание на стерильность.

Комитетом экспертов ВОЗ при проведении испытаний стерильности БП было рекомендовано руководствоваться следующими основными положениями.

1. Отбор проб. Пробы готовой формы препарата должны быть отобраны таким образом, чтобы представлять всю серию целиком, включая пробы в начале и в конце розлива. Число проб должно быть не меньше утвержденного национальным контрольным органом при условии, что из готовой серии, содержащей 500 ампул или более, следует взять не менее 20. Для серий, состоящих менее чем из 500 ампул, брать не менее 10 ампул, для серий менее 100 ампул — 10 %. Число проб рассчитывается по формуле:

$$n = 0.4\sqrt{N},\tag{1}$$

где N — число готовых ампул серии.

- 2. Культуральные среды. Культуральные среды для испытаний должны быть утверждены Национальным контрольным органом. Необходимо показать, что в этих средах способны расти и размножаться аэробы, анаэробы, включая такие их виды, которые обнаруживаются в среде производственных помещений. Для испытания стерильности рекомендованы жидкая среда с тиогликолятом натрия (или тиогликолевой кислотой) и среда из продуктов переваривания соевых бобов и казеина. При использовании для этих целей других сред следует показать, что они по меньшей мере эквивалентны приведенным выше в отношении роста и размножения в них микробов. Критерием чувствительности среды является способность ее поддерживать в аэробно-анаэробных условиях рост микроорганизмов при посеве не более 100 жизнеспособных клеток. Ростовые свойства необходимо оценивать для каждой серии сухой среды или партии, приготовленной из отдельных ингредиентов. Режим стерилизации сред — температура 121 °C, 18-20 мин.
- 3. Необходимость установления у испытуемого материала наличия свойств уничтожать или ингибировать рост и размножение микроорганизмов. При наличии антимикробного эффекта испытание необходимо проводить, используя соответствующий метод нейтрализации.
- 4. Количество вносимого материала зависит от объема первичной упаковки: менее 1 мл все содержимое; не более 20 мл не менее 1 мл; более 20 мл, но не более 100 мл не менее 5 мл для каждого значения температуры инкубации. Образцы для испытаний должны быть репрезентативными.
- Соотношение объемов среды и вносимого материала не должно ухудшать ростовые свойства среды.
- 6. Инкубация. Температура инкубации должна быть одобрена национальным контрольным органом и включать температурные режимы 20–25 и 30–36 °C. Длительность инкубации не менее 14 сут. Препараты, вызывающие помутнение среды, не позволяющее определить наличие и отсутствие роста посторонних микроорганизмов, на 3–7-е сут пересевают и также наблюдают не менее 14 сут.
- 7. Новый метод испытаний метод мембранной фильтрации при определенных условиях (например, наличие антимикробного действия препарата) предпочтителен. Даны рекомендации по применению метода (прибор, параметры фильтров: размер пор 0,22 или 0,45 мкм и диаметр 47 мм, позитивные и негативные контроли, жидкости для растворения и промывки, длительность инкубации).
- 8. Интерпретация результатов. Если ни в одном из сосудов с инокулируемыми культуральными средами нет роста, то образец считается прошедшим испытание. При обнаружении роста микроорганизмов испытуемый препарат считается не удовлетворяющим требованиям стерильности, если национальный орган не убедится с помощью повторных испытаний или других средств в том, что результаты первого были недействительными [8].

В СССР в 1970-е годы также проводились исследования по совершенствованию методов контроля и подходов к испытанию БП, которые учитывали бы предыдущий положительный отечественный опыт по испытаниям стерильности вакцин и сывороток, а также рекомендации ВОЗ для национальных регуляторных органов и производителей вакцин. Применявшийся в соответствии с ГФ X метод контроля стерильности БП предусматривал использование, наряду с ТС, дополнительного набора сред, предназначенных для выявления отдельных групп микроорганизмов (аэробы, анаэробы, грибы). Использование набора ПС обеспечивало достаточную надежность результатов, однако этот метод в связи с необходимостью проведения боль-

шого числа пересевов был весьма трудоемок, требовал больших затрат ПС, рабочего времени персонала и не исключал возможности технических погрешностей.

Разработанная в те годы в нашей стране технология получения сухих компонентов ПС, а именно белковой основы ферментативного гидролизата казеина неглубокой степени расщепления и экстракта кормовых дрожжей — витаминсодержащего компонента, позволила получить сухой препарат ТС [12]. Изготовленная из сухого препарата ТС имела большую чувствительность и была более стандартна по сравнению со средой, полученной из отдельных жидких компонентов, что позволило стандартизовать метод оценки качества медицинских иммунобиологических препаратов (МИБП). Результаты многочисленных испытаний стерильности МИБП, включая препараты национального календаря прививок, проведенных на ведущих производствах, показали, что ТС такого качества обеспечивала выявление различных по своим свойствам микроорганизмовконтаминантов, и свидетельствовали о принципиальной возможности использования ее в качестве универсальной [13].

Принимая во внимание, что ГФ X, опубликованная в 1968 г., утратила свою актуальность, так как не в полной мере отвечала последним достижениям в данной области, а введение в действие нового выпуска ГФ в ближайшее время не планировалось, в 1979 г. в целях совершенствования контроля стерильности бактерийных и вирусных препаратов была разработана и утверждена «Инструкция по контролю стерильности вакцин, анатоксинов, бактериофагов, сывороточных препаратов и аллергенов». Данный документ стал в эти годы основным нормативным документом, регламентирующим требования к проведению контроля стерильности БП [14].

В основу Инструкции [14] были положены результаты многолетних исследований в Государственном научно-исследовательском институте стандартизации и контроля медицинских иммунологических препаратов (ГИСК им. Л.А. Тарасевича) по совершенствованию и стандартизации метода контроля стерильности медицинских БП, снижающего риск выпуска и, соответственно, применения контаминированных вакцин и сывороток. Были подробно описаны требования к ПС и методам оценки ее качества, в частности к нейтрализующим свойствам в отношении наиболее часто используемого при производстве вакцин консерванта — мертиолята. Пересмотрены правила отбора образцов препаратов, схемы контроля, в том числе и препаратов, вызывающих помутнение среды, а также порядок учета результатов. Для выявления различных микроорганизмовконтаминантов было предусмотрено использование не набора сред, а одной универсальной ТС. Для установления срока нейтрализации ртутного консерванта вакцин тиогликолевой кислотой (или тиогликолятом натрия), входящей в состав ТС, был введен показатель ее нейтрализующих свойств, который оценивали с помощью штамма Streptococcus hemolyticus Dick I. Данные модификации позволили обосновать срок годности готовой ТС в течение 4-5 сут для препаратов, содержащих мертиолят, а для препаратов, не содержащих мертиолят, увеличить до 14 сут, и исключить необходимость внесения в среду дополнительного компонента — окислительно-восстановительного индикатора аэробных условий — резазурина натрия, предусмотренного рядом зарубежных фармакопей и в настоящее время [15-18].

Официальные международные требования по использованию конкретных наименований тест-штаммов для оценки ростовых свойств сред при контроле стерильности БП в эти годы отсутствовали. В нашей стране на основе изучения ростовых свойств ТС в отношении различных микроорганизмов отечественных и зарубежных коллекций для определе-

ния ее чувствительности в соответствии с Инструкцией [14] было разрешено использовать тест-штаммы Streptococcus hemolyticus Dick I (аэроб, разведение не ниже 10⁻⁷) и Clostridium oedematiens (novyi) тип С № 198 (строгий анаэроб, разведение не ниже 10-5), замена которых не допускалась. Выбор штаммов с учетом рекомендаций ВОЗ был основан как на анализе опыта практической работы и характеристике наиболее часто выявляемых при производстве БП контаминирующих агентов. так и на результатах отечественных исследований по подбору наиболее требовательных к условиям культивирования штаммов. позволяющих четко дифференцировать партии среды по их чувствительности. Так, например, рост штамма Clostridium oedematiens (novyi) тип С № 198 из разведения 10-7-10-6 на отдельных партиях ТС, изготовленной из сухих компонентов, мог наблюдаться уже через 18-20 ч. Использование в контроле среды штамма с высокой скоростью роста позволило устанавливать отличия в качестве различных серий коммерческой ТС, а также сократить примерно в два раза сроки получения результатов и выдачи заключения о пригодности среды.

Тиогликолевая среда, соответствующая таким требованиям, обеспечивала выявление различных микроорганизмовконтаминантов МИБП (аэробных, анаэробных бактерий и грибов), а также нейтрализацию бактериостатического действия мертиолята $(0,5\cdot 10^{-5}\ \text{г/мл})$. Учитывая особенности производства МИБП (биологическое сырье, асептическое производство, контроль стерильности на всех этапах производства, большие объемы серий и др.), проведение испытания стерильности с помощью одной универсальной среды позволяло осуществлять высокоэффективный, технологичный «мониторинг» качества препаратов по данному показателю и выявлять возможную контаминацию препаратов еще до окончания производственного цикла.

Применяемые ранее в нашей стране правила, предусматривавшие отбор постоянного числа образцов (по 4) для испытания независимо от количества емкостей в серии, были изменены. Расчет образцов, необходимых для достоверного заключения о стерильности серии, стали проводить в том числе с учетом объема готового препарата в каждой емкости по формуле (1). Для удобства расчета в зависимости от объема серии, а также для образцов, расфасованных менее чем по 2 мл. была предложена соответствующая таблица, что позволило более дифференцированно подходить к их отбору. Изменение норм отбора дало возможность унифицировать метод контроля стерильности и привести его также в соответствие с рекомендациями ВОЗ [7, 13]. Соотношение количества вносимого образца и ПС осталось прежним (1:20) и позволяло разведением «снимать» антимикробное действие консервантов МИБП, в том числе фенола и хлороформа, которое не могло быть устранено тиогликолевой кислотой, входящей в состав ТС.

Условия инкубации посевов, порядок учета и интерпретации результатов также были дополнены и уточнены, в том числе и в соответствии с рекомендациями ВОЗ. Для выявления бактерий была установлена температура инкубации посевов от 35 до 37 °С, для выявления грибов — от 20 до 22 °С. Продолжительность инкубации составила 14 сут вместо ранее рекомендованной — 10 сут. Второй этап испытания, применявшийся в соответствии с ГФ X для всех препаратов, а именно пересев на свежую ПС и инкубирование 14 сут от начала испытания, был предусмотрен только для препаратов, вызывающих помутнение среды, для которых сложно идентифицировать наличие микробного роста. При учете результатов наличие роста хотя бы в одной из пробирок необходимо было подтвердить микроскопированием с окрашиванием по Граму и повторить испытание

на том же количестве образцов, что и в первый раз. В случае роста микроорганизмов при повторном посеве, морфологически сходных с микроорганизмами, выявленными при первичном посеве, испытуемый препарат считали нестерильным. При выявлении роста микроорганизмов, отличающихся по морфологии от первоначально выделенных, а также если и в том, и в другом случае отмечался рост лишь в отдельных пробирках, в порядке исключения, учитывая большие партии препаратов, их высокую стоимость, а также вероятностный характер результатов испытания, допускался посев образцов в третий раз.

К началу 1980-х годов исследования, направленные на улучшение качества МИБП, позволили усовершенствовать как саму процедуру испытания стерильности в процессе производства, так и повысить ее эффективность. В 1983 г. приказом Минздрава СССР № 31 был утвержден Сборник инструкций, в который вошли новейшие разработки, касающиеся методов и порядка контроля МИБП, и в первую очередь определения стерильности [19]. Документ содержал подробное описание требований к порядку проведения испытания с детальным изложением всех процедур. Согласно этой инструкции испытание предписывалось проводить с применением ТС, выпускаемой отечественным предприятием (НИИ вакцин и сывороток им. И.И. Мечникова) в виде сухого препарата по утвержденной технической документации [20]. По способности выявлять минимальные количества контаминирующих агентов данная ТС превосходила аналогичные среды, выпускаемые в ЧССР и ГДР [21]. Предусматривалась оценка качества каждой серии сухой ПС, а также каждой партии, приготовленной из сухой, по показателю стерильности, ростовым и нейтрализующим свойствам [19].

Принципиальным отличием новой Инструкции [19] от предыдущей [14] явилась замена аэробного тест-штамма Streptococcus hemolyticus Dick I на Alcaligenes faecalis 415 при контроле ростовых, и в первую очередь нейтрализующих, свойств ТС. Штамм Alcaligenes faecalis 415 — подвижная грамотрицательная палочка, строгий аэроб, непатогенный для человека, был получен из института Листера (Лондон). Именно с помощью этого штамма при одинаковых ростовых свойствах в отношении других, ранее используемых аэробов (S. aureus, S. piogenes Dick I) удавалось выявлять различия в качестве серий среды по их способности нейтрализовать действие мертиолята. Более короткие сроки нейтрализации позволяли быстрее и более надежно выявлять наличие микробного загрязнения в препаратах. Способ контроля качества ТС с использованием чувствительных к составу среды, к условиям аэробно-анаэробного культивирования, а также к наличию в препаратах ртутного консерванта мертиолята, тест-штаммов Alcaligenes faecalis 415 и Clostridium novyi 198, позволявший использовать среду с более высокими показателями качества, был запатентован в СССР в 1981 г. и внесен во все нормативные документы, регламентировавшие требования к проведению испытания на стерильность МИБП [22-25].

Принимая во внимание высокую чувствительность тестштаммов *Alcaligenes faecalis* 415 (разведение не ниже 10⁻⁷; не менее 40 клеток) и *Clostridium novyi* 198 (разведение не ниже 10⁻⁵; не менее 50 клеток) к качеству серий ТС, замена их в испытании на стерильность МИБП не допускалась. Требования к учету и интерпретации результатов не изменились.

Для более оперативного внедрения достижений науки и повышения требований к качеству лекарственных средств, начиная с 1971 г., Управление по внедрению новых ЛС и медицинской техники стало утверждать фармакопейные статьи (ФС), имеющие силу государственных стандартов [26]. В 1988 г. с целью унификации и совершенствования подходов к испытанию сте-

рильности для всех ЛС и МИБП, в отношении которых имелись соответствующие указания в нормативной документации (НД), требования были вновь объединены и включены во временную фармакопейную статью (ВФС) [27]. Единые нормы были установлены для методов, порядка отбора образцов, условий и длительности инкубации, а также для сроков пересева препаратов, вызывающих помутнение среды. В ВФС были учтены также ранее действовавшие в соответствии с Инструкцией [19] основные положения требований к проведению испытаний МИБП.

Так, помимо метода прямого посева для испытания препаратов, обладающих выраженным антимикробным действием, и ЛС, разлитых в емкости более 100 мл, был предложен новый метод мембранной фильтрации, рекомендованный Комитетом экспертов ВОЗ в 1975 г. При расчете количества образцов принимали во внимание режим стерилизации препарата. В случае стерилизации при 121 °C образец должен был состоять из 10 единиц, при других видах стерилизации минимальное количество образцов определяли по формуле (1).

При испытании лекарственных препаратов необходимо было использовать ТС и жидкую среду Сабуро, а для контроля стерильности МИБП — одну ТС. Цистин в составе ТС мог быть заменен на цистеин, обладающий лучшей растворимостью и более сильными антиоксидантными свойствами, связывающий избыток кислорода в процессе хранения среды и поддерживающий, таким образом, условия для анаэробного роста. Допускалось также приготовление ТС без индикатора резазурина [26]. Ростовые свойства ПС должны были быть подтверждены в отношении тест-штаммов аэробных бактерий и грибов, предусмотренных НД, при посеве их в количестве менее 100 жизнеспособных клеток. Для контроля МИБП, содержащих ртутные консерванты, ТС должна обеспечивать во всех засеянных пробирках, содержащих мертиолят в концентрации 10 мкг/мл, видимый рост высокочувствительного к мертиоляту тест-штамма (согласно ТУ 42.14.162-79 [20] и более поздним документам — Alcaligenes faecalis 415) не позднее пяти суток инкубации при температуре от 30 до 35 °C. Срок годности ТС при испытании МИБП, содержащих мертиолят, не более 3 сут, для остальных ЛС — 14 сут. Условия инкубации, а также необходимость пересева через 3-7 сут мутных препаратов совпадали с ранее утвержденными для испытания МИБП.

Требования к учету и интерпретации результатов испытаний для всех ЛС в основном соответствовали Инструкции [19]. Изменения коснулись лишь оценки результатов повторного посева, в котором мог быть выявлен рост микроорганизмов, отличающихся по морфологии от первоначально выделенных. Испытание разрешалось повторить в третий раз, но уже на удвоенном количестве образцов, что увеличивало вероятность получения достоверных результатов.

В 1987–1990 гг. была утверждена ГФ СССР XI издания, а затем, в 2007 г. — ГФ РФ XII издания, однако требования к испытанию на стерильность в этих документах содержали лишь часть положений [27], относившихся к проведению испытаний других ЛС. Согласно ГФ XI особые требования к испытанию на стерильность разрешалось указывать в частных фармакопейных статьях. Среды должны были обеспечивать визуально обнаруживаемый рост соответствующих тест-штаммов аэробных и анаэробных бактерий и грибов, предусмотренных НД, при посеве их в количестве менее 100 жизнеспособных клеток, однако в тексте ГФ XI они не приводились. Учитывая, что на ТС взамен существовавших ТУ 42.14.162–79 [20] были утверждены соответствующие ФС, а также Инструкция по применению этой среды, утвержденная Министерством здравоохранения СССР, контроль ее качества регламентировался именно этими

документами [23–25]. В соответствии с НД ТС была предназначена именно для контроля стерильности МИБП с целью выявления их возможной контаминации аэробными и анаэробными бактериями и грибами, а чувствительность, эффективность и скорость роста оценивали с помощью тест-штаммов, утвержденных в 1983 г. [19].

В 1995 г. в целях совершенствования системы, обеспечивающей должное качество, эффективность и безопасность МИБП, и в соответствии с рекомендациями ВОЗ правительство России возложило на ГИСК им. Л.А. Тарасевича функции национального органа контроля медицинских иммунологических препаратов (НОК) [28]. НОК отвечал за разработку процедур, которые гарантируют, что используемые в Российской Федерации иммунобиологические препараты соответствуют необходимому уровню качества и эффективности. Надзорная деятельность НОК МИБП распространялась на все организации и предприятия, производящие и реализующие МИБП в нашей стране. В функции НОК входили экспертиза документов и испытание отечественных и зарубежных МИБП с целью их государственной регистрации по всем показателям качества, а также согласование инструкций по применению. В ГИСК им. Л.А. Тарасевича проводился также предварительный контроль и анализ материалов на эти препараты, а предприятия направляли производственные протоколы по изготовлению и контролю (паспорта) и образцы каждой серии препарата [29, 30]. Аналогичные требования распространялись и на питательные среды, в том числе предназначенные для контроля стерильности. За НОК были закреплены государственный надзор за качеством и сертификация МИБП [31]. ГИСК им. Л.А. Тарасевича, осуществляя взаимодействие с ВОЗ и национальными органами других стран, проводил научные исследования по совершенствованию методов стандартизации и оценки качества МИБП, разрабатывал национальные стандарты и определял требования к условиям производства и контролю качества [28, 29]. Первоочередное внимание НОК было направлено на безопасность применения МИБП, вводимых людям. Особое место среди показателей качества МИБП, обеспечивающих их безопасность, занимал показатель «Стерильность».

В 1996 г. обобщенные, основанные на многочисленных научных исследованиях и опыте контроля МИБП национальным органом и предприятиями-производителями требования к проведению испытаний на стерильность МИБП были пересмотрены и внесены в МУК «Методы контроля медицинских иммунобиологических препаратов, вводимых людям», утвержденные Государственным комитетом санэпиднадзора Российской Федерации [32]. Положения данного документа распространялись на предприятия, производящие и осуществляющие контроль качества МИБП.

Схема испытания МИБП на стерильность включала следующие основные этапы 1 .

Требования к расчету количества образцов остались без изменений в соответствии с Инструкцией [14]. Методы испытания (прямой посев и мембранная фильтрация), условия инкубации, требования к качеству ТС и тест-штаммы для ее контроля, а также учет результатов были в соответствии с ВФС [27]. Для МИБП, вызывающих помутнение ПС, пересев на соответствующую свежую ПС проводится на 5–7 сут (ранее на 3–7) с последующей инкубацией 14 сут со дня первичного посева. Инактивацию антимикробного действия мертиолята и фенола (хлороформа) при прямом посеве проводят нейтрализацией тиогликолевой кислотой (в составе ТС) и разведением (1:20)

¹ Приводятся только основные этапы испытания стерильности и требования по ним, отличающиеся от требований ГФ для остальных ЛС.

препарата. Перед проведением испытаний МИБП, содержащих ртутные консерванты, подтверждают наличие нейтрализующих свойств ТС, при этом дополнительная инактивация МИБП не требуется [32].

За более чем 30-летний период в НОК МИБП ГИСК им. Л.А. Тарасевича при испытании по данной схеме с применением одной ТС соответствующего качества было проверено более 15 тысяч серий 362 наименований препаратов. Было выявлено 277 нестерильных серий 45 наименований различных МИБП, из них 212 (76,5 %) серий — при 30-35 °C и 192 (69,7 %) серии — при 20-25 °C. Анализ результатов контроля за данный период на предприятиях-производителях МИБП и НОК показал, что не было отмечено ни одного случая, когда контаминация была бы выявлена на альтернативных ПС (бульон Сабуро. соево-казеиновая среда), рекомендуемых как российской, так и другими известными зарубежными фармакопеями, при отсутствии роста на ТС. Во всех случаях микробный рост, независимо от вида выделенного микроорганизма, был подтвержден и при посеве на ТС соответствующего качества. Так, например, в 2009 г. при испытании препарата Солкотриховак в ГИСК им. Л.А. Тарасевича именно по такой схеме была выявлена контаминация, не обнаруженная при испытаниях, проводимых в соответствии с требованиями Европейской фармакопеи (ЕФ) и ГФ XII фирмами IDT (Германия), CONFARMA (Франция), Institut Fresenius (Германия) и в испытательной лаборатории НИИЭМ им. Н.Ф. Гамалеи РАМН. Более того, до настоящего времени не было зарегистрировано ни одного случая поступления нестерильного МИБП в учреждения здравоохранения, прошедшего испытания по данной схеме [33]. Используемая схема позволяла не только выявлять в посевном материале минимальные количества различных контаминирующих агентов (аэробы. анаэробы, грибы), менее 100 жизнеспособных клеток, а в действительности менее 40-50, что соответствовало требованиям ЕФ и ГФ XII, но и использовать для этих целей одну среду тиогликолевую вместо нескольких.

Анализ требований зарубежных фармакопей подтверждает возможность проведения испытания на стерильность по данной схеме, в частности с использованием одной ТС при двух температурных режимах, прежде всего при испытании вязких нефильтруемых препаратов, для которых не может быть применен метод мембранной фильтрации, в том числе содержащих ртутный консервант [15-18, 34]. Данная схема соответствует требованиям международной фармакопеи ВОЗ также и в отношении учета результатов испытания. В случае несоответствия препарата по данному показателю и если доказана правильность проведения теста, повторный контроль в соответствии с этими требованиями следует проводить также на удвоенном количестве образцов. Кроме того, во всех документах имеются указания о возможности использования и других питательных сред, если доказана их чувствительность и эффективность, в том числе тиогликолевой, не содержащей агар и резазурин [15-18, 34].

К 2009 г. отработанная и успешно зарекомендовавшая себя в ходе многолетних исследований НОК и крупнейшими производителями МИБП схема контроля стерильности была включена в нормативные документы (НД, ФСП, производственные регламенты) на все зарегистрированные в Российской Федерации МИБП (более 300 наименований), в том числе на все вакцины национального календаря прививок, на всех этапах производственного процесса: контроль исходного сырья, вносимых ингредиентов, клеточных культур, посевных вирусов, вирусных сборов, полуфабриката до розлива и готовой формы препарата.

Особенностью современного этапа стандартизации ЛС, в том числе МИБП, в Российской Федерации является необходимость гармонизации с ведущими зарубежными фармакопеями в отношении требований к качеству и методам испытаний [35]. Принятая концепция развития получила отражение в таких документах, как «Стратегия развития фармацевтической промышленности Российской Федерации на период до 2020 года» и федеральная целевая программа «Развитие фармацевтической и медицинской промышленности Российской Федерации на период до 2020 года и дальнейшую перспективу». Значительное место в названной программе занимает раздел «Совершенствование государственного регулирования в сфере обращения лекарственных средств и медицинских изделий», ориентированный на гармонизацию нормативно-правового поля с международными стандартами в сфере обращения ЛС и медицинских изделий [36].

В свою очередь, в соответствии с Федеральным законом № 61-ФЗ «Об обращении лекарственных средств» в 2010 г. препараты биологического происхождения, предназначенные для иммунологической диагностики, профилактики и лечения заболеваний (ранее МИБП), были отнесены к лекарственным средствам, к группе иммунобиологических лекарственных препаратов (ИЛП) [37]. Учитывая, что качество лекарственного средства определяется его соответствием требованиям фармакопейной статьи, создание единой законодательной и нормативной базы, а также стандартизация требований к оценке качества всех ЛС в Российской Федерации стали первоочередной задачей.

С целью создания единой мощной отечественной структуры, предназначенной для осуществления экспертизы качества, эффективности и безопасности всех ЛС, включая ИЛП, в 2010 г. к ФГБУ «НЦЭСМП» был присоединен Государственный научноисследовательский институт стандартизации и контроля медицинских биологических препаратов им. Л.А. Тарасевича [38].

Основные стандарты, применяемые в фармакопейном анализе и производстве ЛС в Российской Федерации, в этот период были регламентированы ГФ РФ XII издания, утвержденной в 2007 г. [5]. В то же время требования, предъявляемые к методам оценки качества ИЛП по показателю «Стерильность», были изложены в других, ранее принятых и утвержденных в Российской Федерации документах. Они учитывали особенности этих препаратов и, как следствие, имели ряд существенных отличий от требований ГФ XII ОФС 42-0066-07 «Стерильность». В таблице 1 приведены основные различия в требованиях к проведению испытаний ЛС и ИЛП, регламентированных ГФ XII и МУК 4.1/4.2588-96 соответственно. Различия касались как набора питательных сред, тест-штаммов, порядка расчета количества образцов, так и учета результатов. Более того, в эти годы действующей оставалась и ГФ XI издания, в методике испытания на стерильность ЛС которой для выявления грибов следовало использовать среду Сабуро. Тем не менее известно, что при испытании ряда ИЛП (вакцина желтой лихорадки, сывороточные препараты) с использованием среды Сабуро, имеющей низкое значение pH, равное 5,6 ± 0,2, происходит изменение их физических свойств, так называемое «створаживание» и образование осадка, которое искажает результаты испытания и может повлиять на выявление микроорганизмовконтаминантов [39]. Данная среда также не рекомендована для испытания стерильности БП как Комитетом экспертов ВОЗ, так и основными зарубежными фармакопеями [15-18]. Таким образом, проведение испытания в соответствии с требованиями ОФС 42-0066-07 не только нарушало исторически сложившуюся эффективную схему испытания стерильности ИЛП, но

Таблица 1. Сравнение методик проведения испытания для ИЛП по показателю «Стерильность»

Раздел	Нормативный документ		
	ГФ XII, ОФС 42-0066-07	MYK 4.1/4.2588–96	ГФ XIII, ОФС 1.2.4.0003.15, Гармонизированный вариант для ИЛП
Питатель- ные среды, температура инкубации*	I.1. Тиогликолевая среда (32,5 ± 2,5 °C) 2. Соево-казеиновая среда (22,5 ± 2,5 °C)	Тиогликолевая среда (20–25 и 30–35 °C)	I.1. Тиогликолевая среда (32,5 ± 2,5 °C) 2. Соево-казеиновая среда (22,5 ± 2,5 °C) II.1. Тиогликолевая среда (32,5 ± 2,5 °C) 2. Бульон Сабуро (22,5 ± 2,5 °C)
	II.1. Тиогликолевая среда (32,5 ± 2,5 °C) 2. Бульон Сабуро (22,5 ± 2,5 °C)		III. Тиогликолевая среда** (22,5 ± 2,5 °C, 32,5 ± 2,5 °C)
Требования		Стерильн	ность
к качеству тиогликоле- вой среды	Наличие ростовых свойств (при 32.5 ± 2.5 °C) в отношении тест-штаммов аэробных и анаэробных ба терий при посеве их в количестве менее 100 жизнеспособных клеток**		
	_	Наличие ростовых свойств в отношении тест- штаммов грибов (при 20–25 °C) при посеве из количестве менее 100 жизнеспособных клето	
	— Наличие нейтрализующих свойств* (при прямом посеве мертиолятсодержащих препаратов)		
Тест-штаммы для оценки ростовых свойств тиогликоле- вой среды	Аэробные бактерии: Bacillus subtilis ATCC 6633 Staphylococcus aureus ATCC 6538-P Pseudomonas aeruginosa ATCC 9027 Анаэробные бактерии: Clostridium sporogenes ГИСК 272	Аэробные бактерии: Alcaligenes faecalis 415 Анаэробные бактерии: Clostridium novyi 198	Аэробные бактерии: Bacillus subtilis ATCC 6633 / Bacillus cereus ATCC 10702 Staphylococcus aureus ATCC 6538 Pseudomonas aeruginosa ATCC 9027 Alcaligenes faecalis 415** Анаэробные бактерии: Clostridium sporogenes ГИСК 272 Clostridium novyi 198** Грибы**: Candida albicans ATCC 24433 (или NCTC885-653, ATCC 1023)
Правила отбора. Расчет количества образцов готового препарата	По таблицам, в зависимости от объема серии и фасовки препарата	По формуле $n=0,4\sqrt{N}$, где n — число емкостей для контроля (не менее 10 и не более 40); N — число емкостей в серии	По таблицам, в зависимости от объема серии и фасовки препарата
Учет результа- тов контроля	Для препаратов, вызывающих помутнение среды, пересев на 14 сут, инкубация 14 + 4 сут	Для препаратов, вызывающих помутнение среды, делают пересев на 5–7-е сут, инкубация 14 сут	

 $^{^*}$ Температура инкубации 32,5 \pm 2,5 $^\circ$ C — для выявления бактерий, 22,5 \pm 2,5 $^\circ$ C — для выявления грибов.

могло привести к получению ложноотрицательных результатов и, как следствие, к выпуску контаминированных препаратов.

Учитывая все эти факторы, необходимость внесения дополнений в ОФС 42-0066-07, касающихся требований к испытаниям стерильности ИЛП в Российской Федерации и гармонизированных в том числе с учетом современных международных требований, была очевидна. Идея гармонизации, учитывающей современные российские и международные тенденции и требования к испытаниям стерильности всех групп ЛС, была положена в основу проекта ОФС, рекомендованной взамен ОФС 42-0066-07.

В проект ОФС ГФ XIII были внесены основные требования к проведению испытания стерильности ИЛП в нашей стране в соответствии с МУК 4.1/4.2.588–96. Принимая во внимание, что в набор тест-штаммов для контроля ростовых свойств ТС

ранее не были включены тест-штаммы грибов, предварительно была исследована чувствительность данной среды в отношении штаммов Candida albicans NCTC 885-653 и ATCC 10231, рекомендуемых различными фармакопеями [40]. Показано, что TC обладает чувствительностью 10–100 КОЕ/мл при скорости прорастания штаммов 48 ч, что соответствует отечественным и зарубежным фармакопейным требованиям к ростовым свойствам питательных сред, предназначенным для выявления грибов при испытании стерильности [6, 15–18, 25]. Введение в схему контроля тест-штамма грибов Candida albicans позволило окончательно решить вопрос о возможности использования данной среды в качестве универсальной как для выявления аэробных и анаэробных бактерий, так и грибов.

^{**} Для случаев использования тиогликолевой среды в качестве универсальной при испытании ИЛП.

Таким образом, для проведения испытаний ИЛП на стерильность с помощью универсальной ТС в ГФ XII были предложены и затем внесены в ГФ XIII следующие дополнения:

- для выявления аэробных, анаэробных бактерий и грибов испытание может быть проведено на одной ТС при инкубации посевов при двух температурных режимах 30–35 и 20–25 °С, ростовые свойства среды в этом случае оценивают с помощью тест-штаммов Alcaligenes faecalis 415 (аэроб), Clostridium novyi 198 (анаэроб), Candida albicans NCTC 885-653 или Candida albicans ATCC 10231 (грибы);
- перед проведением испытаний ИЛП, содержащих ртутные консерванты, методом прямого посева, необходимо проводить определение нейтрализующих свойств среды, подтверждающее инактивацию мертиолята, при этом дополнительная инактивация консерванта не требуется;
- для нейтрализации действия других консервантов, входящих в состав ИЛП, инактиваторы не используются, а основным способом устранения их действия является разведение образцов ПС. Посев испытуемого препарата в ПС проводят в соотношении 1:20, с учетом результатов определения антимикробного действия препарата;
- использование жидкой среды Сабуро для проведения испытания ИЛП не рекомендовано;
- для ИЛП, вызывающих помутнение питательной среды, не позволяющее определить наличие или отсутствие роста микроорганизмов, на 5–7 сут производят пересев на свежую питательную среду с последующей инкубацией при соответствующей температуре в течение 14 сут со дня первичного посева;
- если результаты испытания ИЛП признаны недостоверными (в случае обнаружения ошибок в ходе анализа), тест повторяют на удвоенном количестве образцов.

Приказом Министерства здравоохранения Российской Федерации от 29 октября 2015 г. № 771 с 1 января 2016 г. утверждены ОФС и ФС, составившие Государственную фармакопею XIII издания, в том числе и ОФС 1.2.4.0003.15 «Стерильность» [41, 42]. Таким образом, в настоящее время законодательно закреплено, что в соответствии с требованиями ГФ XIII испытание ИЛП может быть проведено методом мембранной фильтрации или прямого посева с использованием одной среды при двух температурных режимах, позволяющих эффективно выявлять контаминацию аэробными и анаэробными бактериями и грибами. Оценка ростовых свойств ТС, проводимая с использованием высокочувствительных тест-штаммов, позволяет выявлять различия в качестве различных партий. Требования, предъявляемые к чувствительности такой ТС, примерно в два раза выше (40-50 КОЕ), чем для других питательных сред, рекомендованных отечественной и зарубежными фармакопеями (до 100 КОЕ) [15-18]. При необходимости проведения испытания препаратов ИЛП методом прямого посева ТС нейтрализует антимикробное действие консерванта мертиолята и не требует дополнительного внесения инактиватора, в отличие от соевоказеиновой среды и жидкой среды Сабуро. Проведение испытания на стерильность с использованием одной ТС при мониторинге ее качества по ростовым и нейтрализующим свойствам соответствующими высокочувствительными тест-штаммами микроорганизмов остается надежной схемой контроля ИЛП.

Вместе с тем, помимо традиционной, используемой в Российской Федерации схемы контроля стерильности ИЛП, требованиями ОФС 1.2.4.0003.15 предложен альтернативный вариант, гармонизированный с требованиями ведущих зарубежных фармакопей, предусматривающий использование для выявления аэробных бактерий и грибов при 20–25 °С жидкой соево-казеиновой среды, который позволяет расширить

спектр возможностей при подборе методики испытания препаратов, имеющих различную природу и состав [42]. При выборе методики для оценки качества препарата по показателю «Стерильность» должна быть проведена проверка ее пригодности, включая определение антимикробного действия, и подтверждено, что будут выполняться критерии эффективности, характерные для фармакопейного метода испытаний (верификация метода), адекватность и воспроизводимость. В случае внесения изменений в экспериментальные условия испытания, технологического процесса или в состав препарата необходимо подтверждать пригодность методики.

Согласно п. 22 ст. 4 Федерального закона от 12 апреля 2010 г. № 61-ФЗ «Об обращении лекарственных средств» качество лекарственного средства — соответствие лекарственного средства требованиям фармакопейной статьи либо в случае ее отсутствия нормативной документации [37]. Для обеспечения высокого качества и безопасности применения ИЛП производители должны устранить в нормативной документации имеющиеся разночтения и несоответствия в ссылках на методики испытания, возникшие в результате многообразия законодательной базы переходного периода. В соответствии с Приказом Министерства здравоохранения Российской Федерации от 29 октября 2015 г. № 771 нормативная документация на зарегистрированные лекарственные препараты для медицинского применения, а также на лекарственные препараты для медицинского применения, заявления о государственной регистрации которых представлены в Министерство здравоохранения Российской Федерации до введения в действие общих фармакопейных статей, утвержденных настоящим приказом, подлежит приведению в соответствие с данными общими фармакопейными статьями до 1 января 2019 г. [41].

Заключение

Проведенный ретроспективный анализ подходов к разработке метода испытания ИЛП по показателю «Стерильность», изучение современных направлений совершенствования оценки качества ИЛП, в том числе в отношении выбора оптимальных питательных сред и методик проверки их качества, чувствительных тест-штаммов и условий инкубирования, определения количества отбираемых образцов препарата, а также обобщение современных требований. предъявляемых к этому испытанию. показали, что гармонизированные и унифицированные требования к проведению испытания всех ЛС, в том числе ИЛП, вошедших в ГФ XIII, учитывают не только современные подходы, но и применявшиеся ранее стандарты, основанные на результатах многолетнего отечественного и международного опыта, и могут послужить основой для установления единых требований к проведению испытания стерильности ИЛП для стран — членов Евразийского экономического союза в рамках создания фармакопеи стран Евразийского союза и поможет выработке единых требований к качеству лекарственных средств.

Информация об отсутствии конфликта интересов. Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

Литература / References

- Федеральный закон от 22 декабря 2014 г. № 429-ФЗ «ОвнесенииизмененийвФедеральныйзакон «Обобращении лекарственных средств». [Federal Law, December 22, 2014, No. 429-FZ «On Amendments to the Federal Law «On Circulation of Medicines» (In Russ.)]
- Федеральный закон «Об иммунопрофилактике инфекционных болезней» № 157-ФЗ от 17.09.1998 (ред. от

- 18.07.2011). [Federal Law, September 17, 1998, No. 157-FZ «About the Immuno Prophylaxis of Infectious Diseases» (Revised July 18, 2011) (In Russ.)]
- 3. Санитарные правила СП 3.3.2.015—94. «Производство и контроль медицинских иммунобиологических препаратов для обеспечения их качества» (утв. постановлением Госкомсанэпиднадзора РФ от 12 августа 1994 г.). [Sanitary Regulations SR 3.3.2.015—94. «Production and Monitoring of Medical Immunobiological Products to Ensure Their Quality» (Approved by the Decision of the State Committee for Sanitary and Epidemiological Supervision of Russia of August 12, 1994) (In Russ.)]
- Правила организации производства и контроля качества лекарственных средств (утв. приказом Министерства промышленности и торговли РФ от 14 июня 2013 г. № 916). [Rules for the Organization of Production and Quality Control of Medicinal Products (Approved by the Order of the Ministry of Industry and Trade of the Russian Federation of June 14, 2013, No. 916) (In Russ.)]
- 5. Государственная фармакопея Российской Федерации. XII изд. Ч. 1. М.: НЦЭСМП; 2008. [The State Pharmacopoeia of the Russian Federation 12th ed. Part 1. Moscow: SCEEMP; 2008 (In Russ.)]
- 6. Микробиологический контроль стерильности лекарственных средств. Лекция 10. [Microbiological Control of Sterility of Medicinal Products. Lecture 10 (In Russ.)] Available from: http://www.gmpua.com/QC/Sterilitytesting.pdf
- Государственная Фармакопея СССР. VII изд. М.–Л.: Медгиз; 1934. [State Pharmacopoeia of the USSR 7th ed. Moscow–Leningrad: Medgiz; 1934 (In Russ.)]
- Серия технических докладов ВОЗ, № 530, 1975. 25-й доклад. [WHO Technical Report Series, No. 530, 1975. 25 report (In Russ.)]
- 9. Государственная Фармакопея СССР. IX изд. М.: Медгиз; 1961. [State Pharmacopoeia of the USSR 9th ed. Moscow: Medgiz; 1961 (In Russ.)]
- 10. Государственная Фармакопея СССР. X изд. М.: Медицина, 1968. [State Pharmacopoeia of the USSR 10th ed. Moscow: Meditsina; 1968 (In Russ.)]
- 11. Инструкция по контролю стерильности вакцин, анатоксинов, бактериофагов, лечебных сывороток и аллергенов (утв. Министерством здравоохранения СССР, 1971). [Instructions for Controlling the Sterility of Vaccines, Anatoxins, Bacteriophages, Therapeutic Sera and Allergens (Approved by the Ministry of Health of the USSR, 1971) (In Russ.)]
- 12. Бендас ЛГ, Рунова ВФ, Петрова ИТ, Раскин БМ. Сухая питательная среда для контроля стерильности медицинских биологических препаратов. В кн.: Стандарты, штаммы и методы контроля вирусных, бактерийных препаратов и аллергенов. Сборник научных трудов МНИИВС им. И.И. Мечникова. М.; 1975. С. 266–70. [Bendas LG, Runova VF, Petrova IT, Raskin BM. Dehydrated Medium for Control of Sterility of Medical Biological Preparations. In: The Standards, Strains and Methods of Control of Viral, Bacterial Products and Allergens. Collection of Research Papers of MNIIVS im. I.I Mechnikova. Moscow; 1975. P. 266–70 (In Russ.)]
- 13. Петрова ИТ, Резепов ФФ. О возможности использования единой питательной среды для контроля стерильности медицинских биологических препаратов. В кн.: Стандарты, штаммы и методы контроля бактерийных и вирусных препаратов. Сборник научных трудов МНИ-ИВС им. И.И. Мечникова. М.; 1977. С. 186–92. [Petrova IT, Rezepov FF. On the Possibility of Using a Single Nutrient Medium to Control the Sterility of Medical Biological Products. In: The Standards, Strains and Methods of Control of Viral and Bacterial Products. Collection of Research Papers of MNIIVS im. I.I. Mechnikova. Moscow; 1977. P. 186–92 (In Russ.)]
- 14. Приказ Министерства здравоохранения СССР от 19 февраля 1979 г. № 192 «О совершенствовании контроля стерильности бактерийных и вирусных препаратов». «Инструкция по контролю стерильности вакцин анатоксинов, бактериофагов, сывороточных препаратов и аллергенов». [Order of the Ministry of Health of the USSR of February 19, 1979, No. 192 «On Improving the Control of the Sterility of Bacterial and Viral Preparations».

- «Instructions for the Control of the Sterility of Vaccines of Anatoxins, Bacteriophages, Serum Preparations and Allergens» (In Russ.)]
- 15. 39/<71>/2016. United States Pharmacopeia. 39th ed. Available from: http://www.uspnf.com/uspnf/login
- European Pharmacopoeia 9.0. 2017. Available from: http://online6.edqm.eu/ep900
- 17. 2.2.11/6.0/2012. Indian Pharmacopoeia.
- 4.06/XVII/2016. The Japanese Pharmacopoeia. 17th ed. Available from: http://jpdb.nihs.go.jp/jp17e/000217650.pdf
- 19. Приказ Минздрава СССР от 13 января 1983 г. № 31 «Об унификации методов контроля медицинских иммунобиологических препаратов». Сборник инструкций по общим методам контроля стерильности, физико-химических свойств, пирогенности, на отсутствие контаминирующих агентов и токсичности иммунобиологических препаратов. [Order of the Ministry of Health of the USSR, January 13, 1983, No. 31 «On the Unification of Methods for the Control of Medical Immunobiological Preparations». Collection of Instructions on General Methods for Controlling Sterility, Physicochemical Properties, Pyrogenicity, Absence of Contaminants and Toxicity of Immunobiological Preparations (In Russ.)]
- 20. Питательная среда для контроля медицинских биологических препаратов (Тиогликолевая среда), сухая. ТУ. 42.14.162–79. [Nutrient Medium for the Control of Medical Biological Preparations (Thioglycolic Medium), Dry. TU. 42.14.162–79 (In Russ.)]
- 21. Петрова ИТ. Стандартизация метода контроля стерильности медицинских биологических препаратов: автореф. дис. ... канд. биол. наук. М.; 1981. [Petrova IT. Standardization of the Method of Sterility Control of Medical Biological Preparations. Cand. Biol. Sci [Thesis]. Moscow; 1981 (In Russ.)]
- 22. Гавристова ИА, Андреева ЗМ, Бендас ЛГ. Способ контроля качества тиогликолевой среды. AC № 990808 на изобретение. Заявка № 3311679 от 03.07.1981. [Gavristova IA, Andreeva ZM, Bendas LG. Author's Certificate No. 990808 for an Invention «Method for Quality Control of a Thioglycolic Medium». Application No. 3311679 of July 3, 1981 (In Russ.)]
- 23. ФС 42-354BC—90. Питательная среда для контроля стерильности (тиогликолевая среда). [FS 42-354BC—90. Nutrient Medium for Sterility Control (Thioglycolic Medium) (In Russ.)]
- 24. ФС 42-3390—97. Питательная среда для контроля стерильности (тиогликолевая среда). [FS 42-3390—97. Nutrient Medium for Sterility Control (Thioglycolic Medium) (In Russ.)]
- 25. Инструкция по применению Питательной среды для контроля стерильности, сухой (тиогликолевой среды). Утв. 29.12.1990. [Instructions for Use of the Nutrient Medium for Sterility Control, Dry (Thioglycolic Medium) Approved on December 29, 1990 (In Russ.)]
- 26. Государственная Фармакопея СССР. XI изд. Вып. 2. M.: Медицина; 1989. [State Pharmacopoeia of the USSR 11th ed. Publication 2. Moscow: Meditsina; 1989 (In Russ.)]
- 27. ВФС 42-1844-88. Испытание на стерильность. [VFS 42-1844-88. Test for Sterility (In Russ.)]
- 28. Постановление Правительства Российской Федерации от 18 декабря 1995 г. № 1241 «О государственном контроле за медицинскими иммунобиологическими препаратами». [Decree of the Government of the Russian Federation, December 18, 1995, No. 1241 «Concerning the State Control over Medical Immunobiological Preparations» (In Russ.)]
- 29. Приказ Минздравмедпрома РФ и Госкомсанэпиднадзора РФ от 4 марта 1996 г. № 79/36 «О совершенствовании государственного контроля за медицинскими иммунобиологическими препаратами». [Order of the Ministry of Healthcare of the Russian Federation and the State Committee for Sanitary and Epidemiological Supervision of the Russian Federation, March 4, 1996, No. 79/36 «On the Improvement of State Control Over Medical Immunobiological Preparations» (In Russ.)]
- 30. Медуницын НВ. Вакцинология. М.: Триада-X; 2010. [Medunitsyn NV. Vaccinology. Moscow: Triada-X; 2010 (In Russ.)]

- 31. Постановление Госкомсанэпиднадзора РФ от 3 июня 1994 г. № 5 «О введении системы государственной регистрации и сертификации медицинских иммунобиологических препаратов». [Decree of the State Sanitary Epidemiological Service of the Russian Federation, June 3, 1994, No. 5 «On Introduction of System of the State Registration and Certification of Medical Immunobiological Preparations» (In Russ.)]
- 32. MУК 4.1/4.2.588–96. Методы контроля медицинских иммунобиологических препаратов, вводимых людям (утв. Госкомсанэпиднадзором РФ 31 октября 1996 г.) [MUK 4.1/4.2.588–96 «Testing of Injectable Medical Immunobiological Preparations» (Approved by the State Committee on Sanitary and Epidemiology Surveillance, October 31, 1996) (In Russ.)]
- 33. Озерецковский НА, Затолочина КЭ, Снегирева ИИ. Предложения по профилактике нежелательных реакций при применении иммунобиологических лекарственных препаратов в Российской Федерации. Безопасность и риск фармакотерапии 2015; (1): 25–9. [Ozeretskovsky NA, Zatolochina KE, Snegireva II. Suggestions for Preventing Undesired Reactions at Application Immunobiological Medicinal Products in the Russian Federation. Safety and Risk of Pharmacotherapy 2015; (1): 25–9 (In Russ.)]
- 34. The International Pharmacopoeia. 7th ed. 2017. Available from: http://apps.who.int/phint/en/p/docf/
- 35. Мовсесянц АА, Бондарев ВП, Олефир ЮВ, Меркулов ВА, Шимчук ЛФ. Стандарты качества иммунобиологических лекарственных препаратов новое в Государственной фармакопее Российской Федерации. Ведомости Научного центра экспертизы средств медицинского применения 2016; (2): 38—41. [Movsesyants AA, Bondarev VP, Olefir YuV, Merkulov VA, Shimchuk LF. Quality Standarts for Immunobiological Medicinal Products New Texts in the State Pharmacopoeia of the Russian Federation. The Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products 2016; (2): 38—41 (In Russ.)]
- 36. Приказ Минпромторга РФ от 23 октября 2009 г. № 965 «Об утверждении Стратегии развития фармацевтической промышленности Российской Федерации на период до 2020 года». [Order of the Ministry of Industry and Trade of the Russian Federation, October 23, 2009, No. 965 «On Approval of the Strategy for the Development of the Pharmaceutical Industry of the Russian Federation for the Period Until 2020» (In Russ.)]
- 37. Федеральный закон Российской Федерации от 12 апреля 2010 г. № 61-ФЗ «Об обращении лекарственных средств»

Об авторах

Федеральное государственное бюджетное учреждение «Научный центр экспертизы средств медицинского применения» Министерства здравоохранения Российской Федерации. Российская Федерация, 127051, Москва, Петровский бульвар, д. 8, стр. 2

Суханова Светлана Михайловна. Начальник лаборатории бактериологических питательных сред и культур клеток Испытательного центра экспертизы качества МИБП, канд. биол. наук

Бердникова Зинаида Евтропиевна. Главный эксперт лаборатории бактериологических питательных сред и культур клеток Испытательного центра экспертизы качества МИБП, канд. биол. наук

Захарова Наталия Евгеньевна. Главный эксперт лаборатории бактериологических питательных сред и культур клеток Испытательного центра экспертизы качества МИБП, канд. биол. наук

Меркулов Вадим Анатольевич. Заместитель генерального директора по экспертизе лекарственных средств, д-р мед. наук, профессор

Поступила 18.01.2018 Принята к публикации 08.02.2018

- (в ред. № 192-ФЗ от 27 июля 2010 г.; № 271-ФЗ от 11 октября 2010 г.; № 313-ФЗ от 29 ноября 2010 г.). [Federal Law of the Russian Federation, April 12, 2010, No. 61-FZ «On Circulation of Medicines» (As Amended by Federal Law No. 192-FZ of July 27, 2010, No. 271-FZ of October 11, 2010, No. 313-FZ of November 29, 2010) (In Russ.)]
- 38. Лепахин ВК, Олефир ЮВ, Меркулов ВА, Бунатян НД, Романов БК, Яворский АН, Рычихина ЕМ. История создания и развития контрольно-разрешительной системы лекарственных средств в России. Ведомости Научного центра экспертизы средств медицинского применения 2016; (1): 3–10. [Lepakhin VK, Olefir YuV, Merkulov VA, Bunatyan ND, Romanov BK, Yavorsky AN, Rychikhina EM. The History of Creation and Development of the Control and Licensing System of Medicines in Russia. The Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products 2016; (1): 3–10 (In Russ.)]
- 39. Суханова СМ, Захарова НЕ. Питательные среды в практике микробиологических исследований. В кн.: Руководство по медицинской микробиологии. М.: Бином; 2008. С. 221–54 [Sukhanova SM, Zaharova NE. Nutrient Media in the Practice of Microbiological Research. In: Guide to Medical Microbiology. Moscow: Binom; 2008. P. 221–54 (In Russ.)] 40. Суханова СМ, Бердникова ЗЕ, Захарова НЕ. Новый
- 40. Суханова СМ, Бердникова ЗЕ, Захарова НЕ. Новый подход к испытаниям препаратов лекарственных средств на стерильность. В кн.: Всероссийская научно-практическая конференция «Вакцинология-2010». Совершенствование иммунобиологических средств профилактики, диагностики и лечения инфекционных болезней. М.; 2010. С. 108. [Sukhanova SM, Berdnikova ZE, Zaharova NE. A New Approach to Trials of Drugs for Sterility. In: All-Russian Research-to-Practice Conference «Vaccinology-2010». Improvement of Immunobead and Logical Means of Prevention, Diagnosis and Treatment of Infectious Diseases. Moscow; 2010. P. 108 (In Russ.)]
- 41. Приказ Министерства здравоохранения Российской Федерации от 29 октября 2015 г. № 771 «Об утверждении общих фармакопейных статей и фармакопейных статей». [Order of the Ministry of Health of the Russian Federation, October 29, 2015, No. 771 «Approval of General Pharmacopeia Articles and Pharmacopeia Articles» (In Russ.)]
- 42. Общая фармакопейная статья 1.2.4.0003.15 Стерильность. Государственная фармакопея Российской Федерации, XIII изд. Т. 3; М.; 2015. [General Monograph 1.2.4.0003.15 Sterility. The State Pharmacopoeia of Russian Federation 13th ed. V. 3. Moscow; 2015 (In Russ.)] Available from: http://www.femb.ru/feml

Authors

Federal State Budgetary Institution «Scientific Centre for Expert Evaluation of Medicinal Products» of the Ministry of Health of the Russian Federation, 8/2 Petrovsky boulevard, Moscow 127051, Russian Federation

Svetlana M. Sukhanova. Head of the Laboratory of Bacteriological Culture Media and Cell Cultures of the Testing Centre for Evaluation of Medicinal Immunobiological Products' Quality. Candidate of Biological Sciences

Zinaida E. Berdnikova. Chief Expert of the Laboratory of Bacteriological Culture Media and Cell Cultures of the Testing Centre for Evaluation of Medicinal Immunobiological Products' Quality. Candidate of Biological Sciences

Natalia E. Zakharova. Chief Expert of the Laboratory of Bacteriological Culture Media and Cell Cultures of the Testing Centre for Evaluation of Medicinal Immunobiological Products' Quality. Candidate of Biological Sciences

Vadim A. Merkulov. Deputy Director-General for Medicinal Products' Evaluation. Doctor of Medical Sciences, Professor

Received 18 January 2018 Accepted 8 February 2018 УДК 57.086.8 + 57.017.35 DOI: 10.30895/2221-996X-2018-18-1-16-24 ШИФР 03.03.04 СПЕЦИАЛЬНОСТЬ

. Клеточная биология, цитология, гистология

Применение проточной цитометрии для оценки качества биомедицинских клеточных продуктов

* Г. А. Трусов, А. А. Чапленко, И. С. Семенова, Е. В. Мельникова, Ю. В. Олефир

Федеральное государственное бюджетное учреждение «Научный центр экспертизы средств медицинского применения» Министерства здравоохранения Российской Федерации, Российская Федерация, 127051, Москва, Петровский бульвар, д. 8, стр. 2

Метод проточной цитометрии — наиболее информативный метод идентификации и количественного определения поверхностных маркеров клеток. Проточная цитометрия дает возможность проводить подсчет клеток, а также характеризацию их типов и подтипов путем мечения клеток моноклональными антителами, конъюгированными с флуорохромом. В настоящее время производителями продуктов на основе клеток человека накоплен значительный опыт применения проточной цитометрии, разработано большое количество методик, подлежащих валидации и включению в спецификацию на клеточный продукт. В обзоре авторами рассмотрен опыт применения метода проточной цитометрии для оценки качества клеточных линий человека, используемых, в частности, для создания препаратов с целью применения в клеточной терапии. Учитывая обязательное наличие клеточного компонента в составе биомедицинских клеточных продуктов (БМКП), метод проточной цитометрии будет являться обязательным при подтверждении подлинности в ходе экспертизы качества БМКП в Российской Федерации.

Ключевые слова: проточная цитометрия; биомедицинские клеточные продукты; мезенхимальные стромальные клетки; поверхностные маркеры; клеточная терапия

Для цитирования: Трусов ГА, Чапленко АА, Семенова ИС, Мельникова ЕВ, Олефир ЮВ. Применение проточной цитометрии для оценки качества биомедицинских клеточных продуктов. БИОпрепараты. Профилактика, диагностика, лечение 2018; 18(1): 16–24. DOI: 10.30895/2221-996X-2018-18-1-16-24

Use of Flow Cytometry for Quality Evaluation of Biomedical Cell Products

* G. A. Trusov, A. A. Chaplenko, I. S. Semenova, E. V. Melnikova, Yu. V. Olefir

Federal State Budgetary Institution «Scientific Centre for Expert Evaluation of Medicinal Products» of the Ministry of Health of the Russian Federation, 8/2 Petrovsky boulevard, Moscow 127051, Russian Federation

Flow cytometry is the most common method of identification and quantitation of cell surface markers. Flow cytometry can be used for cell counting and characterization of cell types and subtypes by labeling cells with fluorochrome-conjugated monoclonal antibodies. Manufacturers of human cell-based medicinal products have accumulated significant experience in flow cytometry and developed a large number of procedures that can be validated and included into cell products specifications. The present review summarises the experience gained with the use of flow cytometry for characterization of human cell lines used to develop cell therapy products. Since all biomedical cell products (BMCPs) have a cellular component, it will be necessary to use the flow cytometry method for identification testing of BMCPs during evaluation of their quality.

Key words: flow cytometry; biomedical cell products; mesenchymal stromal cells; surface markers; cell therapy

For citation: Trusov GA, Chaplenko AA, Semenova IS, Melnikova EV, Olefir YuV. Use of Flow Cytometry for Quality Evaluation of Biomedical Cell Products. BIOpreparations. Prevention, Diagnosis, Treatment 2018; 18(1): 16–24. DOI: 10.30895/2221-996X-2018-18-1-16-24

* Contact person: Trusov Georgy Aleksandrovich; trusov@expmed.ru

^{*} Контактное лицо: Трусов Георгий Александрович; trusov@expmed.ru

В настоящее время метод проточной цитометрии описан в ведущих мировых фармакопеях для количественной и качественной оценки популяций клеток как в биологических образцах пациентов, так и в клеточных продуктах [1, 2]. В Европейском союзе и США при определении показателей качества и составлении спецификаций препаратов для клеточной терапии метод проточной цитометрии используется для определения иммунофенотипического профиля, характеризующего чистоту, подлинность и эффективность клеточного продукта [3, 4]. Под эффективностью препарата понимается количественная мера биологической активности на основе характеристик продукта, которые связаны с соответствующими биологическими свойствами. Анализ, демонстрирующий биологическую активность, должен основываться на предполагаемом биологическом эффекте, который в идеале должен быть связан с клиническим ответом на применение продукта [5].

Основные клеточные характеристики (жизнеспособность, принадлежность к той или иной популяции, степень дифференцировки и др.), непосредственно влияющие на качество как конечных, так и промежуточных продуктов, могут быть определены с помощью технологии проточной цитометрии [6].

Проточная цитометрия применяется для определения подлинности клеточного компонента. Результаты теста могут быть получены в течение нескольких часов. Методика может быть валидирована при использовании набора антител, вза-имодействующих с определенными эпитопами на клеточной поверхности. Оценка подлинности проводится определением иммунофенотипа, идентичность которого должна быть более 80 %. На сегодняшний день использование проточной цитометрии считается обязательным, но недостаточным для доказательства подлинности препарата, применяемого для клеточной терапии [3, 7, 8].

В связи с принятием в июне 2016 г. Федерального закона № 180-ФЗ «О биомедицинских клеточных продуктах» все вновь разрабатываемые продукты, содержащие клеточные линии человека, должны быть стандартизованы. Одним из ключевых методов оценки показателей качества биомедицинских клеточных продуктов (БМКП), безусловно, будет являться метод проточной цитометрии [9]. Цель работы — оценить наработанный отечественными и зарубежными учеными опыт стандартизации клеточных линий с использованием метода проточной цитометрии, возможные проблемы при его использовании и подходы к их решению.

Основные характеристики метода

Метод проточной цитометрии — метод идентификации и количественного определения поверхностных маркеров клеток. При выполнении исследования образцы клеток окрашивают флуоресцирующими моноклональными антителами и затем подвергают анализу как однородную клеточную суспензию при помощи лазера. С помощью проточной цитометрии определяют также такие параметры, как морфологические характеристики клеток и клеточно-подобных структур, клеточные пигменты, содержание ДНК, содержание РНК, белки, внутриклеточные маркеры, рН и др. Особенностью проточной цитометрии является автоматическая количественная оценка заданных параметров для большого числа отдельных клеток в процессе каждого анализа [7].

Проточная цитометрия является подходящим методом для идентификации, характеристики и выделения стволовых клеток и клеток-предшественников для исследований и потенциального клинического применения [10]. Особенность метода проточной цитометрии заключается в том, что с ее помощью

можно быстро выполнять количественные измерения на отдельных клетках в их гетерогенной популяции. Идентификация и количественное определение отдельных клеточных подмножеств сопровождается мультипараметрическим анализом: обычно определяют размер и неоднородность (измеренные прямым и боковым светорассеянием), а также используют маркеры подлинности (измерение флуоресценции). Одновременное количественное определение жизнеспособности клеток может проводиться с использованием 7-амино-актиномицина D (7-AAD). Многомерный проточно-цитометрический анализ позволяет выявить аберрантные популяции клеток костного мозга, лимфоидной ткани и периферической крови пациентов с лейкемией и лимфомой. Современные функциональные анализы позволяют непосредственно изучать состояние активности клеток путем измерения внутриклеточной продукции/секреции цитокинов или хемокинов [10].

Проточная цитометрия позволяет проводить анализ подтипов лейкоцитов путем мечения клеток моноклональными антителами, конъюгированными с флуорохромом. Экспрессия CD34 класса III обычно используется для характеристики гемопоэтических стволовых клеток (ГСК) в периферической и пуповинной крови, костном мозге и очищенных препаратах ГСК из перечисленных источников. Сочетание реагентов анти-CD45, анти-CD34 и красителя для определения жизнеспособности, например, 7-AAD широко используется в клинической практике. Эти анализы позволяют определять соответствующее количество и тип требуемых клеточных популяций, а также обнаруживать нежелательные клетки, такие как остаточные плюрипотентные клетки, которые у реципиента могут оказаться туморогенными.

Преимуществами метода проточной цитометрии являются:

- возможность одновременного измерения нескольких параметров для каждой клетки;
 - достаточно высокая скорость проведения анализа;
- выделение популяций клеток (определение как поверхностного фенотипа, так и внутриклеточных маркеров) и возможность их сортировки;
- определение абсолютного и относительного содержания клеток в образце;
- оценка состояния ДНК, исследование стадий клеточного цикла, степени пролиферативной активности;
- одновременное изучение нескольких антигенных структур на одной клетке (коэкспрессия);
- способность обнаружить и охарактеризовать редкие события и малочисленные клеточные популяции.

Среди основных недостатков метода проточной цитометрии следует отметить:

- необходимость использования суспензии из отдельных клеток для проведения анализа и разрушения структуры ткани;
 - достаточно высокая стоимость оборудования и реагентов;
 - высокие требования к квалификации персонала и др.

Сложности возникают также с разработкой и производством стандартов как клеточных популяций, так и антител, меченных флуорохромами.

Определение экспрессии различных поверхностных маркеров стволовых клеток для классификации клеточного типа может быть затруднено вследствие артефактов в гетерогенной клеточной популяции. Применение рекомендуемых маркеров для иммунофенотипирования часто не является достаточным в гетерогенных клеточных смесях, таких как обработанный липоаспират.

Кроме того, в нашей стране в настоящее время отсутствуют производство стандартов для цитофлуориметрии и междуна-

родная гармонизированная система, согласно которой данные стандарты должны производиться.

Субъективность ручной работы вносит корректировку в данные и в значительной степени влияет на воспроизводимость, надежность и сопоставимость результатов анализа методом проточной цитометрии [11].

В частности, при появлении в результатах исследования редких случаев, как правило, невозможно отличить фрагменты нежизнеспособных клеток («клеточный дебрис») от редкой уникальной субпопуляции клеток. Обычно такие результаты исключаются из анализа данных. Однако эти «артефакты» могут представлять собой модифицированные типы клеток, присутствие которых нежелательно в готовом клеточном продукте. Технологические достижения в настоящее время позволяют проводить быструю и многомерную количественную оценку миллионов отдельных клеток для определения клеточных субпопуляций, а также оценку клеточной разнородности [12]. Например, была создана платформа OpenCyto (http://www.opencyto.org) и разработаны методы автоматизированного гейтирования для анализа, создающего сотни значений фенотипов популяции клеток.

Автоматизированное гейтирование — это логическое ограничение, используемое для селекции событий при анализе по нескольким коррелирующим параметрам [13]. ОрепСуtо выполняет предварительную обработку, идентификацию популяции клеток, сопоставление популяции и корреляцию полученных результатов [10]. Эта платформа обеспечивает исследователя набором инструментов, которые хорошо подходят для гейтирования лимфоцитов, переходных В-клеток, синглетов, бимодальных, мультимодальных или редких популяций клеток. Таким образом, подходы к минимизации ошибок при цитометрическом иммунофенотипировании должны включать в себя:

- определение стандартных панелей антител для иммунофенотипирования;
- использование предварительно лиофилизированных реагентов;
 - автоматизация сбора данных на основе выборочных данных;
 - подготовка образцов к окрашиванию in situ;
- использование калибровочных частиц для настройки прибора;
- центральный анализ одним или несколькими согласованными экспертами;
 - использование автоматических алгоритмов гейтирования.

Учитывая обязательное наличие клеточного компонента в составе БМКП, метод проточной цитометрии будет являться обязательным при подтверждении подлинности в ходе экспертизы качества БМКП в Российской Федерации.

Необходимое условие для исследования клеточной линии методом проточной цитометрии — использование суспензии клеток, так как измерение проводится в токе жидкости. Таким образом, исследование подлинности БМКП, которые представляют собой суспензии клеток, методом проточной цитометрии не составит трудностей, однако пробоподготовка (получение суспензии клеток) при наличии в составе БМКП медицинского устройства, геля или других носителей («скаффолдов») может быть затруднена, а в некоторых случаях практически неосуществима без потери жизнеспособности клеток. Определение жизнеспособности клеток после отделения клеточного компонента от неклеточного (например, от коллагена) является необходимой процедурой перед проведением анализа [14].

Для проведения экспертизы качества в рамках государственной регистрации БМКП в соответствии с п. 17 Приложения к Приказу Министерства здравоохранения Российской Федерации от 31 января 2017 г. № 30н «Об утверждении Правил проведения биомедицинской экспертизы биомедицинских клеточных продуктов и форм заключений комиссии экспертов федерального государственного бюджетного учреждения по проведению биомедицинской экспертизы биомедицинских клеточных продуктов» заявитель представляет в экспертное учреждение, помимо образцов БМКП, клеточную линию (клеточные линии), входящую (ие) в состав БМКП, а в спецификации на БМКП должны содержаться сведения об идентичности (подлинности), в том числе в части экспрессии специфических поверхностных маркеров клеточной линии (иммунофенотип) и допустимое количественное содержание клеток до нанесения на носитель, определяемые методом проточной цитометрии.

Опыт применения проточной цитометрии для характеризации клеточных линий человека

Рассмотрим опыт применения метода проточной цитометрии при характеризации клеточных линий человека, используемых, в частности, для создания препаратов в клеточной терапии.

Прогресс в области изучения регенеративного потенциала стволовых клеток обуславливает их широкое использование в клинических исследованиях. На сегодняшний день клинические исследования в соответствии с данными «Реестра клинических исследований федеральных и частных фармацевтических компаний» (Clinical Trials registry and database, www.ClinicalTrials.gov) проводятся с препаратами на основе стволовых клеток для лечения рака, повреждений мышц, аутоиммунных заболеваний, травм спинного мозга и ряда других нарушений, для которых в настоящее время нет эффективной медикаментозной терапии или основные механизмы заболевания еще не выяснены.

В целях стандартизации мезенхимальных стромальных клеток (МСК), изолированных из различных тканей и культивируемых в различных условиях, Международным обществом по клеточной терапии (Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular Therapy) были определены следующие минимальные критерии идентификации: адгезия к пластику при соблюдении стандартных условий при культивировании; способность к дифференцировке в остеобласты, адипоциты, хондроциты в условиях *in vitro*; позитивное окрашивание по поверхностным антигенам CD105/CD90/CD73 и негативное по CD34/CD45/CD11b, или CD14/CD19, или CD79α/HLA-DR1 [15].

Если эти критерии не выполняются полностью, то термин «мезенхимальные стромальные клетки» должен использоваться для клеток, полученных из костного мозга, или следует использовать другие термины для МСК-подобных клеток различного происхождения [16].

После публикации минимальных критериев в 2006 г. некоторые исследователи отмечали, что с учетом новых идентифицированных маркеров следует пересмотреть минимальные критерии для определения человеческих МСК, а также для тканеспецифичных вариаций фенотипа этих клеток [17]. Хотя функциональное определение МСК вряд ли изменится, фенотипическое определение, по-видимому, меняется в зависимости от вида и источника ткани. Вероятно, появятся новые ткане- и видоспецифичные маркеры МСК.

При изучении свойств МСК было обнаружено большое количество поверхностных кластеров дифференцировки, экспрессируемых клетками, примеры которых представлены в таблице 1 [18].

Таблица 1. Кластеры дифференцировки, наиболее часто используемые в качестве маркеров стволовых клеток

Название	Расположение	Основные функции	
CD44	СК: эмбриональные, мезенхимальные, гематопоэтические. Клетки злокачественных опухолей (изоформы CD44 S и V)	Рецептор гиалуроновой кислоты	
CD105 (эндоглин)	Фибробласты, гладкомышечные и мезенхимальные СК	Трансмембранный белок, составная часть рецептора к трансформирующему ростовому фактору бета, стимуляция ангиогенеза	
CD90 (Thy-1)	Гематопоэтические, мезенхимальные, нейрональные СК	Стимуляция нейрогенеза	
CD73 (NT5E)	СК всех типов, лимфоциты и лимфобласты	5'-рибонуклеотидфосфогидролаза	
CD13 (аланинамино- пептидаза)	Клетки микроворсинок тонкого кишечника и почек. СК жировой ткани и эндометрия	Является экзопептидазой и высвобождает N-концевую аминокислоту из пептида (предпочтительно аланин)	
CD10 (неприлизин)	Гематопоэтические СК — предшественницы Т-, В-лимфоцитов и натуральных киллеров. Клетки лимфом различного генеза	Нейтральная эндопептидаза, участвует в деградации натрийуретического пептида, а также брадикинина	

Считается, что загрязнение культур МСК фибробластами может привести к снижению потенциала дифференцировки стволовых клеток [19]. Согласно данным научной литературы МСК и фибробласты имеют общие свойства, однако определение, предложенное Международным обществом по клеточной терапии, не позволяет различить МСК и фибробласты [20]. Результаты исследований показывают, что использование CD10, CD26, CD106, CD146 и ITGA11 может быть полезно для идентификации МСК костного мозга и их отделения от человеческих дермальных фибробластов [21]. Такие поверхностные маркеры могут использоваться для контроля качества культур МСК после культивирования, криоконсервации, трансфекции генов и других манипуляций.

МСК обладают способностью к дифференцировке в различных направлениях. Например, хондрогенная дифференцировка возможна у клеток, положительных по CD90 и отрицательных по CD45 [22]. По мнению Y. Sakaguchi и соавт. (2005 г.), синовиальные МСК в сравнении с клетками, выделенными из костного мозга и надкостницы, характеризуются большей способностью к хондрогенной дифференцировке [22]. Несмотря на то что МСК жировой ткани обладают меньшим хондрогенным потенциалом в сравнении с МСК, выделенными из других источников, они легко могут быть получены в количестве,

необходимом для последующей трансплантации [23]. Необходимо отметить, что МСК из костного мозга и надкостницы обладают выраженным остеогенным потенциалом и способны к спонтанной дифференцировке в данном направлении, что может быть использовано при лечении дефектов костной ткани [22].

В настоящее время нельзя заключить, что МСК, расположенные в разных тканях, имеют сходства (общие черты) или идентичны [24]. Например, МСК жировой ткани экспрессируют маркер CD34 [25], тогда как МСК костного мозга данный маркер не экспрессируют. СD271 экспрессируется в синовиальной жидкости [26, 27]. МСК костного мозга экспрессируют W8-B2/ MSCA-1 в отличие от МСК, полученных из плаценты [28]. Это, вероятно, может способствовать производству терапевтических продуктов на основе МСК с значительно улучшенным качеством и предсказуемым биологическим поведением. Кроме того, дальнейшее изучение функций МСК костного мозга при заболеваниях, связанных с физиологией кости и развитием клеток крови, включая остеопороз и лейкоз, приведет к пониманию роли МСК в развитии этих заболеваний и открывает перспективы развития их терапии в дальнейшем. Различия в иммунофенотипе МСК, выделенных из разных источников, представлены в таблице 2.

Таблица 2. Иммунофенотип МСК в зависимости от источника выделения

Источник МСК	(+) маркеры	(–) маркеры	Источник литературы
Пуповинная кровь	CD10, CD13, CD29-integrin b1, CD49b-integrin a2, CD49c-integrin a4, CD49d-integrin a3, CD49e, CD51, CD73 (SH3), CD90 (Thy-1), CD105 (SH2), CD146, CD166 (ALCAM)	CD14, CD31 (PECAM), CD33, CD34, CD45, CD38, CD56, CD123 (IL-3 receptor), CD133, CD235a	[29]
Жировая ткань	CD9, CD10, CD13, CD29, CD44, CD49d, CD49e, CD54, CD55, CD59, CD73, CD90, CD105, CD106, CD146, CD166, HLA I, фибронектин, эндомуцин, виментин, коллаген 1-го типа	CD11b, CD14, CD19, CD31, CD34, CD45, CD79a, CD80, CD117, CD133, CD144, HLA- DR, c-kit, MyD88, STRO-1, Lin, HLA II	[30]
Эндометрий	CD13, CD29, CD44, CD73, CD90, CD105	CD34, HLA-DR	[31]
Пульпа	CD29, CD90, CD10, CD54, CD56, CD166	CD14, CD34, CD45	[32]
Костный мозг	CD13, CD44, CD73, CD90, CD105	CD31, CD34, CD45, CD117	[24]

С использованием проточной цитометрии показана высокая экспрессия CD44 в сперматогониальных стволовых клетках (SSC, Spermatogonial stem cells), стволовых клетках волосяного фолликула (HFSC, Hair follicle stem cell), гранулезных клетках (GC, Granulosa cells) и MCK вартониева студня (WJ-MSC, Warton's Jelly-derived mesenchymal stromal cells), что способствует поддержанию свойства мультипотентности. Кроме того, высокая экспрессия CD105 в SSC, HFSC и WJ-MCK выявляет остеогенный потенциал этих клеток. Высокая экспрессия CD90 в SSC и HFSC может ассоциироваться с более высоким потенциалом роста и дифференцировки этих клеток. Таким образом, клеточная терапия, основанная на применении четырех типов MCK, может использоваться в клинической практике [33].

По данным авторов [32], которыми проведена оценка влияния состава питательных сред для культивирования МСК на их рост и иммунофенотипические характеристики, установлено, что наличие или отсутствие сывороток животного происхождения в среде культивирования не влияет на содержание поверхностных маркеров, характерных для МСК.

С начала 2000-х годов проводятся активные исследования возможностей применения различных типов стволовых клеток в терапии ишемической болезни сердца [34, 35]. Например, имеются сообщения о результатах проведенных клинических исследований, свидетельствующие о том, что CD133* ГСК после трансплантации улучшают функцию левого желудочка [36].

Некоторые исследователи считают более перспективным использование стволовых клеток сердца (СКС), которые считаются эндогенными предшественниками кардиомиоцитов (КМЦ). Эти клетки идентифицируют по наличию различных маркеров клеточной поверхности, таких как c-kit, MDR, NKX2.5, CD195 и Sca-1 [37-39]. Например, было показано, что Sca-1+клетки, выделенные из сердца взрослого организма, могут быть дифференцированы в сокращающиеся кардиомиоциты при культивировании в специфических условиях [37, 40]. По результатам Wang и соавт. [41], трансплантация Sca-1+/CD31популяции СКС в условиях моделирования инфаркта миокарда на мышах приводила к улучшению функции левого желудочка благодаря стимуляции процесса ангиогенеза. В работе [42] было показано, что трансплантация c-kit-положительных клеток улучшала функции левого желудочка. При анализе Zaruba и соавт. [43] кардиомиогенного потенциала c-kit+ СКС, выделенных из нормального неонатального, нормального взрослого и инфарктного взрослого сердца мыши, было продемонстрировано, что только c-kit+/CD45- субпопуляция клеток, выделенных из неонатального сердца, демонстрировала выраженную кардиомиогенную активность.

Метод проточной цитометрии широко используется и для характеристики клеточных линий, находящихся в мировых коллекциях. Так, в Американской коллекции типовых культур (АТСС, American Type Culture Collection) в настоящее время представлены три клеточные линии мезенхимальных стволовых клеток: из жировой ткани (АТСС® PCS500011 $^{\text{TM}}$); из костного мозга (АТСС® PCS-500-012 $^{\text{TM}}$); из пуповинной крови (АТСС $^{\text{C}}$ PCS-500-010 $^{\text{TM}}$). Для идентификации линии мезенхимальных стволовых клеток жировой ткани используются следующие поверхностные маркеры: CD29 $^{\text{+}}$, CD44 $^{\text{+}}$, CD73 $^{\text{+}}$, CD90 $^{\text{+}}$, CD105 $^{\text{+}}$, CD166 $^{\text{+}}$, CD14 $^{\text{-}}$, CD31 $^{\text{-}}$, CD34 $^{\text{-}}$, CD45 $^{\text{-}}$; для идентификации линии мезенхимальных стволовых клеток из костного мозга: CD29 $^{\text{+}}$, CD44 $^{\text{+}}$, CD73 $^{\text{+}}$, CD90 $^{\text{+}}$, CD105 $^{\text{+}}$, CD166 $^{\text{+}}$, CD14 $^{\text{-}}$, CD34 $^{\text{-}}$, CD19 $^{\text{-}}$, CD45 $^{\text{-}}$ [44].

Метод проточной цитометрии также позволяет проводить сортировку стволовых клеток. Например, выделенные стволовые клетки эпидермиса, использование которых перспективно

в терапии витилиго, буллезного эпидермолиза, реконструкции уретры, обладают следующим иммунофенотипом: высокое содержание интегрина-β1, сочетание высокого содержания интегрина-α6 с низким содержанием трансферрина (α6^{nigh}/ CD71^{low}) [45]. К другим недавно выявленным маркерам поверхности стволовых клеток эпидермиса относятся лиганд Нотча, дельтаподобные 1 (DLL1, Delta-like ligands 1) [40] и иммуноглобулин-подобные домены 1 (LRIG1) [46] и CD46 [47].

Метод проточной цитометрии для оценки качества препаратов клеточной терапии

Препарат на основе аллогенных мезенхимальных стволовых клеток костного мозга Prochymal® («Osiris», США) был разрешен к медицинскому применению в Канаде и Новой Зеландии в 2012 г. для лечения реакции «трансплантат против хозяина». После продажи технологии компанией-разработчиком препарат был переименован в TEMCELL® и клинически исследуется к применению в Австралии и Японии для лечения лучевых поражений, хронической обструктивной болезни легких, болезни Крона и др. Ключевыми характеристиками качества препарата являются:

- внешний вид клетки от белого до светло-желтого цвета;
- жизнеспособность ≥ 70 %;
- подлинность (поверхностные маркеры):

положительные — CD105 (Эндоглин), CD166 (молекула клеточной адгезии активированных лейкоцитов);

отрицательные — СD45 (общий лейкоцитарный антиген);

- эффективность:

экспрессия рецептора I типа фактора некроза опухоли (TNF RI) ≥ 108 пг/мл;

экспрессия ингибитора α рецептора интерлейкина-2 (IL- $2R\alpha$) ≥ 30 % ингибирование.

Для оценки чистоты препарата (присутствие жизнеспособных клеточных популяций, отличных от целевой) возможна идентификация клеток, положительных по CD45 или, например, CD45-/CD105-/CD166+ в количестве не более 5 % [48].

Хондрогенная дифференцировка МСК открывает перспективы клинического применения клеток с целью восстановления хрящевой ткани, прежде всего суставных хрящей. В настоящее время для восстановления поврежденной хрящевой поверхности используются следующие технологии: аутотрансплантация хондроцитов (ACI, Autological chondrocyte implantation), матрикс-индуцированная имплантация хондроцитов (MACI, Matrix associated chondrocyte implantation), имплантация клеточной культуры мезенхимальных стволовых клеток, в том числе в сочетании с технологиями генной модификации клеток [49–52].

Для определения фенотипической стабильности хондроцитов, применяемых в лечении хрящевых дефектов, Лютен и соавт. [53] предложили ряд маркеров, которые могут достоверно использоваться для прогнозирования потенциала образования хряща:

- позитивный маркер FRZB (Frizzled-подобный белок 1);
- негативный маркер ALK1 (рецептор активина а, тип II-подобная киназа);
- один или более маркеров, выбранных из группы, состоящей из негативного маркера PEDF (Pigment epithelium-derived factor; фактор, выделенный из пигментного эпителия), позитивного маркера COL11 (коллаген, тип XI A1), позитивного маркера COL2 (коллаген, тип II, альфа 1) и позитивного маркера FGFR3 (Fibroblast growth factor; рецептор фактора роста фибробластов 3), OPN (остеопонтин), BMP-2 (костный морфогенетический белок 2) и RASF-PLA (фосфолипаза A2).

В России с 2010 г. применяется технология, разработанная Институтом стволовых клеток человека (ПАО «ИСКЧ», Москва, Россия), которая основана на использовании дермальных аутологичных фибробластов для коррекции возрастных изменений кожи (SPRS-терапия, Service for personal regeneration of skin) [54]. Иммунофенотипический профиль фибробластов кожи в норме соответствует профилю клеток мезенхимного ряда. Фибробласты имеют высокий уровень экспрессии виментина, молекул адгезии (CD44, CD49b, CD54, CD90, CD105), не экспрессируют маркеры прогениторных, гемопоэтических (CD34, CD45, CD133, CD117, HLA-DR, нестин) и эндотелиальных (фактор фон Виллебранда, CD106) клеток [55].

При стандартизации аутологичных фибробластов определение иммунофенотипа получаемых клеток авторы выполняли с помощью проточной цитометрии и флуоресцентной микроскопии. С помощью иммунофенотипического анализа культур дермальных аутофибробластов, предназначенных для клинического применения, можно определить:

- высокий уровень экспрессии коллагенов (I, III типов), эластина и виментина:
- наличие маркеров (CD73+, CD90+ и CD105+), подтверждающих мезенхимное происхождение применяемых клеток;
- отсутствие гемопоэтических (CD34-, CD45-) и эпителиальных (цитокератины 14, 15, 16, 19) маркеров [56].

Метод проточной цитометрии также рекомендован Европейским медицинским агентством (ЕМА, European Medicines Agency) для определения потенциала (эффективности) дендритных клеток (ДК) при изготовлении дендритно-клеточных вакцин [57]. Рабочая группа ЕМА по препаратам передовой терапии выдвинула ряд требований к потенциалу ДК (табл. 3) [58].

Метод проточной цитометрии применяется не только для характеризации готового продукта, но также в процессе разработки и производства, например как один из способов получения незрелых ДК из моноцитов периферической крови человека, как описано в работе Ж.К. Назаркиной и соавт. [59].

Заключение

Актуальность применения метода проточной цитометрии в Российской Федерации для характеристики клеточных линий, входящих в состав БМКП, прежде всего диктуется требованиями к спецификации на БМКП, определенными приказом Минздрава России от 19.01.2017 № 14н «Об утверждении формы спецификации на биомедицинский клеточный продукт». В настоящее время производителями медицинских продуктов, полученных на основе клеток человека, накоплен значительный опыт применения метода проточной цитометрии, который позволяет получить интегральные данные о количестве клеток,

Таблица 3. Требования к дендритным клеткам, используемым при изготовлении дендритно-клеточных вакцин

Показатель	Метод	Критерии приемлемости
Жизнеспособ- ность	Окраска трипано- вым синим	> 80 %
Иммунофенотип (основные поверхностные маркеры)	Проточная цитометрия	CD11c+/MHC-II+ > 95 % CD80+ > 60 %
Иммунофенотип (дополнительные поверхностные маркеры)	Проточная цитометрия	CD54, CD69, CD83 и др.

совокупности маркеров на их поверхности и косвенно — об их состоянии и биологической активности. Учитывая колоссальный объем получаемой информации, который сочетается с экспрессностью и стоимостью анализа, проточная цитометрия является одним из ключевых методов определения основных характеристик клеточных линий человека. Однако разработчик БМКП должен обосновать выбор панели маркеров иммунофенотипирования, позволяющей однозначно идентифицировать используемую целевую популяцию клеток или выявить нежелательные популяции, влияющие на безопасность конечного продукта. Данная задача осложняется тем фактом, что число известных видов поверхностных маркеров постоянно увеличивается, а профиль их экспрессии изменяется в зависимости от стадии дифференцировки и микроокружения клеток.

Информация об отсутствии конфликта интересов. Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

Литература / References

- United States Pharmacopeia: United States Pharmacopeial Convention. 37th ed.
- 2. European Pharmacopoeia: EDQM. 8th ed. Available from: http://online.edqm.eu/entry.htm
- 3. Carmen J, Burger SR, McCaman M, Rowley JA. Developing Assays to address Identity, Potency, Purity and Safety: Cell Characterization in Cell Therapy Process Development. Regen Med. 2012; 7(1): 85–100.
- 4. Commission Directive 2009/120/EC of 14 September 2009 Amending Directive 2001/83/EC of the European Parliament and of the Council on the Community Code Relating to Medicinal Products for Human Use as Regards Advanced Therapy Medicinal Products. Available from: https:// ec.europa.eu/health/sites/health/files/files/eudralex/vol-1/ dir_2009_120/dir_2009_120_en.pdf
- ICH Q6B Note for Guidance on Specifications: Test Procedures and Acceptance Criteria for Biotechnological/ Biological Products (CPMP/ICH/365/96). Available from: http://www.ema.europa.eu/docs/en_GB/document_library/ Scientific_guideline/2009/09/WC500002824.pdf
- Guideline on Human Cell-based Medicinal Products (EMEA/CHMP/410869/2006). Available from: http://www. ema.europa.eu/docs/en_GB/document_library/Scientific_ guideline/2009/09/WC500003894.pdf
- 7. Bravery CA, Carmen J, Fong T, Oprea W, Hoogendoorn KH, Woda J, et al. Potency Assay Development for Cellular Therapy Products: an ISCT Review of the Requirements and Experiences in the Industry. Cytotherapy 2013; 15(1): 9–19.
- SME Workshop on CMC of Biological Medicinal Products. EMA London 14–16.04.2015. CMC ISSUES for Cell Based ATMP. Available from: http://www.ema.europa.eu/docs/en_GB/ document library/Presentation/2015/05/WC500187353.pdf
- Приказ Министерства здравоохранения Российской Федерации от 19.01.2017 № 14н «Об утверждении формы спецификации на биомедицинский клеточный продукт». [Order of Ministry of Health of the Russian Federation No. 14n of January 19, 2017 (In Russ.)]
- Donnenberg VS, Ulrich H, Tárnok A. Cytometry in Stem Cell Research and Therapy. Cytometry A. 2013; 83(1): 1–4.
- Aghaeepour N, Finak G, Hoos H, Mosmann TR, Brinkman R, et al. Critical Assessment of Automated Flow Cytometry Data Analysis Techniques. Nat Methods 2013; 10: 228–38.
- 12. Maecker HT, McCoy JP, Nussenblatt R. Standardizing Immunophenotyping for the Human Immunology Project. Nat Rev Immunol. 2012; 12(3): 191–200.
- O'Neill K, Aghaeepour N, Spidlen J, Brinkman R. Flow Cytometry Bioinformatics. PLoS Comput Biol. 2013; 9(12): e1003365.

- 14. Papadimitropoulos A, Piccinini E, Brachat S, Braccini A, Wendt D, Barbero A, et al. Expansion of Human Mesenchymal Stromal Cells from Fresh Bone Marrow in a 3D Scaffold-Based System under Direct Perfusion. PLoS One 2014; 9(7): e102359.
- Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal Criteria for Defining Multipotent Mesenchymal Stromal Cells. The International Society for Cellular Therapy Position Statement. Cytotherapy 2006; 8(4): 315–7.
- 16. Choi YH, Kurtz A, Stamm C. Mesenchymal Stem Cells for Cardiac Cell Therapy. Hum Gene Ther. 2011; 22(1): 3–17.
- Schachtele S, Clouser C, Aho J. Markers and Methods to Verify Mesenchymal Stem Cell Identity, Potency, and Quality. WHITE PAPER, R&D Systems, Inc. Available from: https://resources.rndsystems.com/images/site/wp-msc-13763.pdf
- 18. Шахпазян НК, Астрелина ТА, Яковлева МВ. Мезенхимальные стволовые клетки из различных тканей человека: биологические свойства, оценка качества и безопасности для клинического применения. Клеточная трансплантология и тканевая инженерия 2012; 7(1): 23–33. [Shachpazyan NR, Astrelina TA, Yakovleva MV. Mesenchymalstem Cells from Various Human Tissues: Biological Properties, Assessment of Quality and Safetyfor Clinical Use. Cellular Transplantation and Tissue Engineering 2012; 7(1): 23–33 (In Russ.)]
- Prockop DJ, Olson SD. Clinical Trials with Adult Stem/ Progenitor Cells for Tissue Repair: Let's not Overlook Some Essential Precautions. Blood 2007; 109(8): 3147–51.
- Haniffa MA, Collin MP, Buckley CD, Dazzi F. Mesenchymal Stem Cells: The Fibroblasts' New Clothes? Haematologica 2009; 94(2): 258–63.
- Kundrotas G. Surface Markers Distinguishing Mesenchymal Stem Cells from Fibroblasts. Acta Medica Lituanica 2012; 19(2): 75–9.
- Sakaguchi Y, Sekiya I, Yagishita K, Muneta T. Comparison of Human Stem Cells Derived from Various Mesenchymal Tissues: Superiority of Synovium as a Cell Source. Arthritis Rheum. 2005; 52(8): 2521–9.
- 23. Li Q, Tang J, Wang R, Bei C, Xin L, Zeng Y, Tang X. Comparing the Chondrogenic Potential in Vivo of Autogeneic Mesenchymal Stem Cells Derived from Different Tissues. Artif Cells Blood Substit Immobil Biotechnol. 2011; 39(1): 31–8.
- Boxall SA, Jones E. Markers for Characterization of Bone Marrow Multipotential Stromal Cells. Stem Cells International 2012; 2012. Available from: https://www.hindawi.com/ journals/sci/2012/975871/cta/
- 25. Quirici N, Scavullo C, de Girolamo L, Lopa S, Arrigoni E, Deliliers GL, Brini AT. Anti-L-NGFR and -CD34 Monoclonal Antibodies Identify Multipotent Mesenchymal Stem Cells in Human Adipose Tissue. Stem Cells Dev. 2010; 19(6): 915–25.
- Arufe MC, De La Fuente A, Fuentes I, de Toro FJ, Blanco FJ. Chondrogenic Potential of Subpopulations of Cells Expressing Mesenchymal Stem Cell Markers Derived from Human Synovial Membranes. J Cell Biochem. 2010; 111(4): 834–45.
- Kurth TB, Dell'Accio F, Crouch V, Augello A, Sharpe PT, De Bari C. Functional Mesenchymal Stem Cell Niches in Adult Mouse Knee Joint Synovium in Vivo. Arthritis Rheum. 2011; 63(5): 1289–1300.
- Mikami Y, Ishii Y, Watanabe N, Shirakawa T, Suzuki S, Irie S, et al. CD271/p75NTR Inhibits the Differentiation of Mesenchymal Stem Cells into Osteogenic, Adipogenic, Chondrogenic, and Myogenic Lineages. Stem Cells Dev. 2011; 20(5): 901–13.
- 29. Moretti P, Hatlapatka T, Marten D, Lavrentieva A, Majore I, Hass R, Kasper C. Mesenchymal Stromal Cells Derived from Human Umbilical Cord Tissues: Primitive Cells with Potential for Clinical And Tissue Engineering Applications. Adv Biochem Eng Biotechnol. 2010; 123: 29–54.

- Schäffler A, Büchler C. Concise Review: Adipose Tissue-Derived Stromal Cells — Basic and Clinical Implications for Novel Cell-Based Therapies. Stem Cells 2007; 25(4): 818–27.
- 31. Домнина АП, Фридлянская ИИ, Земелько ВИ, Пуговкина НА, Ковалева ЗВ, Зенин ВВ и др. Мезенхимальные стволовые клетки эндометрия человека при длительном культивировании не подвергаются спонтанной трансформации. Цитология 2013; 55(1): 69–74. [Domnina AP, Fridlianskaia II, Zemelko VI, Pugovkina NA, Kovaleva ZV, Zenin VV, et al. Mesenchymal Stem Cells of Human Endometrium Do Not Undergo Spontaneous Transformation During Long-Term Cultivation. Tsitologiya 2013; 55(1): 69–74 (In Russ.)]
- 32. Шаманская ТВ, Осипова ЕЮ, Пурбуева ББ, Устюгов АЮ, Астрелина ТА, Яковлева МВ, Румянцев СА. Культивирование мезенхимальных стволовых клеток ех vivo в различных питательных средах (обзор литературы и собственный опыт). Онкогематология 2010; (3): 65–71. [Shamanskaya TV, Osipova YeYu, Purbueva BB, Ustyugov AYu, Astrelina TA, Yakovleva MV, Rumyantsev SA. Ex Vivo Expansion of Mesenchymal Stem Cells in Different Culture Conditions (The Literature Review and Own Experience). Oncohematology 2010; (3): 65–71 (In Russ.)]
- 33. Maleki M, Ghanbarvand F, Behvarz MR, Ejtemaei M, Ghadirkhomi E. Comparison of Mesenchymal Stem Cell Markers in Multiple Human Adult Stem Cells. Int J Stem Cells 2014 Nov; 7(2): 118–26.
- 34. Abdel-Latif A, Bolli R, Tleyjeh IM, Montori VM, Perin EC, Hornung CA, et al. Adult Bone Marrow-Derived Cells for Cardiac Repair: a Systematic Review and Meta-Analysis. Arch Intern Med. 2007; 167(10): 989–97.
- 35. Коноплянников МА, Кальсин ВА, Аверьянов АВ. Стволовые клетки для терапии ишемической болезни сердца: достижения и перспективы. Клиническая практика 2012; (3): 63–77. [Konoplyannikov MA, Kalsin VA, Averyanov AV. Stem Cells for the Therapy of Ischemic Heart Disease: Advances and Prospects. Clinical Practice 2012; (3): 63–77 (In Russ.)]
- 36. Mansour S, Roy DC, Bouchard V, Nguyen BK, Stevens LM, Gobeil F, et al. COMPARE-AMI Trial: Comparison of Intracoronary Injection of CD133+ Bone Marrow Stem Cells to Placebo in Patients after Acute Myocardial Infarction and Left Ventricular Dysfunction: Study Rationale and Design. J Cardiovasc Transl Res. 2010; 3(2): 153–9.
- 37. Oh H, Bradfute SB, Gallardo TD, Nakamura T, Gaussin V, Mishina Y, et al. Cardiac Progenitor Cells from Adult Myocardium: Homing, Differentiation, and Fusion after Infarction. Proc Natl Acad Sci USA 2003; 100(21): 12313–8.
- 38. Valente M, Nascimento DS, Cumano A, Pinto-do-Ó P. Sca-1+ Cardiac Progenitor Cells and Heart-Making: a Critical Synopsis. Stem Cells Dev. 2014; 23(19): 2263–73.
- 39. Keith MC, Bolli R. «String theory» of C-Kit(Pos) Cardiac Cells: A New Paradigm Regarding the Nature of These Cells that May Reconcile Apparently Discrepant Results. Circ Res. 2015: 116(7): 1216–30.
- Matsuura K, Nagai T, Nishigaki N, Oyama T, Nishi J, Wada H, et al. Adult Cardiac Sca-1-Positive Cells Differentiate into Beating Cardiomyocytes. J Biol Chem. 2004; 279(12): 11384–91.
- 41. Wang X, Hu Q, Nakamura Y, Lee J, Zhang G, From AH, Zhang J. The Role of the Sca-1+/CD31- Cardiac Progenitor Cell Population in Postinfarction Left Ventricular Remodeling. Stem Cells 2006; 24(7): 1779–88.
- 42. Bolli R, Chugh AR, D'Amario D, Loughran JH, Stoddard MF, Ikram S, et al. Cardiac Stem Cells in Patients with Ischaemic Cardiomyopathy (SCIPIO): Initial Results of a Randomised Phase 1 Trial. Lancet 2011; 378(9806): 1847–57.
- 43. Zaruba MM, Soonpaa M, Reuter S, Field LJ. Cardiomyogenic Potential of C-Kit+-Expressing Cells Derived from Neonatal and Adult Mouse Hearts. Circulation 2010; 121(18): 1992–2000.

- 44. Американская коллекция типовых культур (ATCC). [American Type Culture Collection (ATCC) (In Russ.)] Available from: http://www.lgcstandards-atcc.org
- 45. Jackson CJ, Tønseth KA, Utheim TP. Cultured Epidermal Stem Cells in Regenerative Medicine. Stem Cell Res Ther. 2017; 8(1): 155.
- 46. Jensen KB, Watt FM. Single-Cell Expression Profiling of Human Epidermal Stem and Transit-Amplifying Cells: Lrig1 Is a Regulator of Stem Cell Quiescence. Proc Natl Acad Sci USA 2006; 103(32): 11958–63.
- 47. Tan DW, Jensen KB, Trotter MW, Connelly JT, Broad S, Watt FM. Single-Cell Gene Expression Profiling Reveals Functional Heterogeneity of Undifferentiated Human Epidermal Cells. Development 2013; 140(7):1433–44.
- 48. Australian Public Assessment Report for Remestemcel-L, Ex Vivo Adult Human Mesenchymal Stem Cells. Australian Government, Department of Health, Therapeutic Goods Administration, 2015. Available from: https://www.tga.gov.au/sites/default/files/auspar-remestemcel-l-150315.pdf
- 49. Божокин МС, Божкова СА, Нетылько ГИ. Возможности современных клеточных технологий для восстановления поврежденого суставного хряща (аналитический обзор литературы). Травматология и ортопедия России 2016; 22(3): 122–34. [Bozhokin MS, Bozhkova SA, Netylko GI. Possibilities of Current Cellular Technologies for Articular Cartilage Repair (Analytical Review). Traumatology and Orthopedics of Russia 2016; 22(3): 122–34 (In Russ.)]
- Gille J, Schuseil E, Wimmer J, Gellissen J, Schulz AP, Behrens P. Mid-Term Results of Autologous Matrix-Induced Chondrogenesis for Treatment of Focal Cartilage Defects in the Knee. Knee Surg Sports Traumatol Arthrosc. 2010; 18(11): 1456–64.
- Vasiliadis HS, Danielson B, Ljungberg M, McKeon B, Lindahl A, Peterson L. Autologous Chondrocyte Implantation in Cartilage Lesions of the Knee: Long-Term Evaluation with Magnetic Resonance Imaging and Delayed Gadolinium-Enhanced Magnetic Resonance Imaging Technique. Am. J. Sports. Med. 2010; 38(5): 943–49.
- 52. Camarero-Espinosa S, Rothen-Rutishauser B, Foster EJ, Weder C. Articular Cartilage: from Formation to Tissue Engineering. Biomater Sci. 2016; 4(5): 734–67. 53. Тижени НВ, Лютен Ф, Де Бари К, Делль'аччо Ф. Мар-
- 53. Тижени НВ, Лютен Ф, Де Бари К, Делль'аччо Ф. Маркерные гены для применения в идентификации фенотипической стабильности хондроцитов и в скрининге факторов, влияющих на продуцирование хряща. Патент Российской Федерации, № 2508548; 2014. [Tigenix NV, Luyten F, De Bari C, Dell'Accio F. Marker Genes for Use in

- the Identification of Chondrocyte Phenotypic Stability and in the Screening of Factors Influencing Cartilage Production. Patent of the Russian Federation, No. 2508548; 2014 (In Russ.)]
- 54. Исаев АА, Приходько АВ, Зорин ВЛ и др. Медицинская технология «Забор, транспортировка, выделение, культивирование, криоконсервирование, хранение и использование аутологичных фибробластов для коррекции возрастных и рубцовых изменений кожи». ФС № 2009/398 от 21 июля 2010 г. [Isaev AA, Prikhodko AV, Zorin VL, et al. Medical technology «Fence, Transportation, Isolation, Cultivation, Cryopreservation, Storage and Use of Autologous Fibroblasts for Correction of Age-Related and Cicatrical Skin Changes». FS № 2009/398 dated 21.07.2010 (In Russ.)]
- 55. Зорин ВЛ, Зорина АИ, Петракова ОС, Черкасов ВР. Дермальные фибробласты для лечения дефектов кожи. Гены & Клетки Клеточная трансплантология и тканевая инженерия 2009; 4(4): 26–40. [Zorin VL, Zorina AI, Petrakova OS, Cherkasov VR. Dermal Fibroblasts for Skin Defects Therapy. Cell Transplantology and Tissue Engineering 2009; 4(4): 26–40 (In Russ.)]
- 56. Зорин В, Зорина А, Черкасов В, Копнин П, Деев Р, Исаев А и др. Применение аутологичных дермальных фибробластов для коррекции возрастных изменений кожилица. Результаты годичных исследований. Эстетическая медицина 2012; 11(2): 171–82. [Zorin V, Zorina A, Cherkasov V, Kopnin P, Deev R, Isaev A, et al. Application of Autologous Dermal Fibroblasts for Correction of Age-Related Changes of Skin: the Year of Clinical Observations. Aesthetic Medicine 2012; 11(2): 171–82 (In Russ.)]
- 57. Committee for Medicinal Products for Human Use (CHMP). Guideline on Potency Testing of Cell Based Immunotherapy Medicinal Products for the Treatment of Cancer (EMEA/ CHMP/BWP/271475/2006). Available from: http://www. ema.europa.eu/docs/en_GB/document_library/Scientific_ guideline/2009/09/WC500003814.pdf
- 58. Méndez-Hermida F. Approaches to the Non-Clinical Development of Advanced Therapy Medicinal Products. SME Workshop: Focus on Non-Clinical Aspects. European Medicines Agency, London, United Kingdom; 2016.
- 59. Назаркина ЖК, Лактионов ПП. Получение дендритных клеток для иммунотерапии раковых заболеваний. Биомедицинская химия 2015; 61(1): 30–40. [Nazarkina ZhK, Laktionov PP. Preparation of Dendritic Cells for Cancer Immunotherapy. Biomedical Chemistry 2015; 61(1): 30–40 (In Russ.)]

Об авторах

Федеральное государственное бюджетное учреждение «Научный центр экспертизы средств медицинского применения» Министерства здравоохранения Российской Федерации, Российская Федерация, 127051, Москва, Петровский бульвар, д. 8, стр. 2

Трусов Георгий Александрович. Эксперт 2 категории лаборатории биомедицинских клеточных продуктов Испытательного центра экспертизы качества лекарственных средств

Чапленко Александр Андреевич. Эксперт 2 категории лаборатории биомедицинских клеточных продуктов Испытательного центра экспертизы качества лекарственных средств

Семенова Ирина Семеновна. Эксперт 1 категории лаборатории биомедицинских клеточных продуктов Испытательного центра экспертизы качества лекарственных средств, канд. биол. наук

Мельникова Екатерина Валерьевна. Ведущий эксперт лаборатории биомедицинских клеточных продуктов Испытательного центра экспертизы качества лекарственных средств, канд. биол. наук

Олефир Юрий Витальевич. Генеральный директор, д-р мед. наук

Поступила 04.10.2017 Принята к публикации 08.02.2018

Authors

Federal State Budgetary Institution «Scientific Centre for Expert Evaluation of Medicinal Products» of the Ministry of Health of the Russian Federation, 8/2 Petrovsky boulevard, Moscow 127051, Russian Federation

Georgy A. Trusov. 2nd Professional Category Expert of the Laboratory of Biomedical Cell Products of the Testing Centre for Evaluation of Medicinal Products' Quality

Alexander A. Chaplenko. 2nd Professional Category Expert of the Laboratory of Biomedical Cell Products of the Testing Centre for Evaluation of Medicinal Products' Quality

Irina S. Semenova. 1st Professional Category Expert of the Laboratory of Biomedical Cell Products of the Testing Centre for Evaluation of Medicinal Products' Quality. Candidate of Biological Sciences

Ekaterina V. Melnikova. Leading Expert of the Laboratory of Biomedical Cell Products of the Testing Centre for Evaluation of Medicinal Products' Quality. Candidate of Biological Sciences

Yuri V. Olefir. General Director. Doctor of Medical Sciences

Received 4 October 2017 Accepted 8 February 2018 УДК 576.08:57.085.23 DOI: 10.30895/2221-996X-2018-18-1-25-32 ШИФР 03.03.04 СПЕЦИАЛЬНОСТЬ

Клеточная биология, цитология, гистология

Применение методов цитогенетического анализа при оценке качества клеточных линий в составе биомедицинских клеточных продуктов

* О. А. Рачинская, В. А. Меркулов

Федеральное государственное бюджетное учреждение «Научный центр экспертизы средств медицинского применения» Министерства здравоохранения Российской Федерации, Российская Федерация, 127051, Москва, Петровский бульвар, д. 8, стр. 2

Биомедицинские клеточные продукты (БМКП) — новая группа препаратов, основанных на применении клеточных линий различного происхождения для лечения широкого спектра заболеваний, в том числе в сфере регенеративной медицины. Контроль качества клеточного компонента таких препаратов является важной задачей на всех стадиях разработки и производства БМКП. Большое внимание должно уделяться подтверждению безопасности препаратов в силу ряда их особенностей и возможности возникновения побочных эффектов при их применении, в том числе риска развития онкологических заболеваний. Возможной причиной канцерогенеза может стать генетическая нестабильность клеточного компонента БМКП. Для выявления генетической нестабильности клеток, входящих в состав БМКП, на хромосомном уровне возможно применение ряда цитогенетических методов. Подтверждение наличия в клетках неизменного кариотипа и идентификацию различных хромосомных аномалий возможно осуществлять с помощью как классических цитогенетических методов анализа, например дифференциальное окрашивание хромосом, так и с помощью молекулярно-цитогенетических методов, основанных на применении флуоресцентной гибридизации *in situ*. При комплексном использовании этих методов возможно получение достоверной оценки генетической стабильности и косвенного доказательства отсутствия малигнизации клеточной линии в составе БМКП.

Ключевые слова: биомедицинский клеточный продукт; клеточная линия; генетическая нестабильность; хромосомные аномалии; кариотипирование

Для цитирования: Рачинская ОА, Меркулов ВА. Применение методов цитогенетического анализа при оценке качества клеточных линий в составе биомедицинских клеточных продуктов. БИОпрепараты. Профилактика, диагностика, лечение 2018; 18(1): 25–32. DOI: 10.30895/2221-996X-2018-18-1-25-32

* Контактное лицо: Рачинская Ольга Анатольевна; Rachinskaya@expmed.ru

Use of Cytogenetic Analysis Methods for Assessing the Quality of Cell Lines in Biomedical Cell Products

* O. A. Rachinskaya, V. A. Merkulov

Federal State Budgetary Institution «Scientific Centre for Expert Evaluation of Medicinal Products» of the Ministry of Health of the Russian Federation, 8/2 Petrovsky boulevard, Moscow 127051, Russian Federation

Biomedical cell products (BMCPs) are a new group of biologicals that are based on various cell lines and are used in the treatment of a wide range of diseases as well as in the field of regenerative medicine. The quality control of the cellular component in such preparations is very important at all stages of BMCPs development and production. Much attention should be given to confirmation of BMCPs safety because of their specific properties and potential side effects, including the risk of cancer development. Carcinogenesis may be attributed to genetic instability of the BMCP cellular component. A number of cytogenetic methods can be used at the chromosomal level in order to identify the genetic instability of cells in a BMCP. Confirmation of the normal karyotype of cells and identification of various chromosomal abnormalities can be achieved using both classic cytogenetic analysis methods, such as chromosome banding, and molecular cytogenetic methods based on the use of fluorescent *in situ* hybridization. Combination of these methods may provide a reliable estimation of genetic stability of the cell line in a BMCP, and indirect evidence of absence of malignancy.

Key words: biomedical cell product; cell line, genetic instability; chromosomal abnormality; karyotyping

For citation: Rachinskaya OA, Merkulov VA. Use of Cytogenetic Analysis Methods for Assessing the Quality of Cell Lines in Biomedical Cell Products. BIOpreparations. Prevention, Diagnosis, Treatment 2018; 18(1): 25–32. DOI: 10.30895/2221-996X-2018-18-1-25-32

* Contact person: Rachinskaya Olga Anatolyevna; Rachinskaya@expmed.ru

Согласно Федеральному закону от 23 июня 2016 г. № 180-ФЗ «О биомедицинских клеточных продуктах» под биомедицинским клеточным продуктом (БМКП) следует понимать комплекс, состоящий из клеточной линии (клеточных линий) и вспомогательных веществ либо из клеточной линии (клеточных линий) и вспомогательных веществ в сочетании с прошедшими государственную регистрацию лекарственными препаратами для медицинского применения и (или) медицинскими изделиями.

БМКП обязательно должен содержать в своем составе клеточную линию (или клеточные линии) — стандартизованную популяцию клеток одного типа с воспроизводимым клеточным составом, полученную путем изъятия из организма человека биологического материала с последующим культивированием клеток вне организма человека [1]. В качестве клеточного компонента могут выступать мезенхимальные стромальные клетки (МСК), лимфоциты, дендритные клетки, хондроциты, фибробласты, гепатоциты и другие типы клеток.

Эффективность препаратов на основе человеческих клеток и тканей напрямую связана с их качеством и сохранением клеточной функции в процессе производства [2]. Требования к качеству БМКП должны охватывать все стадии жизненного цикла БМКП и представлять собой комплексную систему оценки, посредством которой возможно оценить как производственный процесс, так и обеспечить постоянство характеристик клеточного продукта. Выбор показателей качества БМКП и методов их оценки зависит от этапа производства и стадии технологического процесса, включая выделение и культивирование клеток. Оценка качества непосредственно клеточной линии, входящей в состав БМКП, должна содержать разные показатели, например, такие как подлинность, чистота, активность [3]. Одним из самых важных показателей при оценке качества клеточной линии является безопасность, а именно выявление в используемой клеточной линии признаков генетической нестабильности и возможного канцерогенного потенциала, которые могут привести к серьезным побочным эффектам при терапии с применением данного клеточного продукта.

Под генетической нестабильностью принято понимать повышенную частоту мутационных явлений в геноме клеток, что может приводить в дальнейшем к иммортализации клеток и их опухолевой трансформации. Генетическая нестабильность может проявляться на разных уровнях (генном, хромосомном, геномном). На хромосомном уровне генетическая нестабильность заключается в появлении в клетках различных структурных и численных хромосомных аномалий, носящих клональный характер. При увеличении плоидности генома и появлении три-, тетра- и полиплоидных клеток говорят о геномном уровне генетической нестабильности.

Выбор методов для оценки качества готового БМКП должен основываться на балансе значимости для определения критических параметров качества и скорости их проведения. Поэтому важной и актуальной задачей становится выбор адекватных методов для оценки качества клеточных линий в составе БМКП, в том числе неизменного кариотипа для подтверждения безопасности клеточного продукта на их основе.

Оценка стабильности и канцерогенного потенциала клеточных линий в составе препаратов на основе клеток

Введение в организм больного клеточного трансплантата, содержащего клетки с нестабильным геномом, может привести к разного рода осложнениям. Известны многочисленные примеры хромосомных перестроек, которые либо обуславливают предрасположенность к развитию онкологических заболева-

ний, либо могут являться прямой причиной злокачественной трансформации. Поэтому применение клеток для терапевтических целей должно определяться данными по их безопасности для пациента, в том числе онкогенной [4–6].

Риск возникновения кистозных структур, содержащих эпителиоподобные клетки, был показан на начальном изучении препарата прогениторных олигодендроцитов из эмбриональных стволовых клеток (ЭСК) человека для лечения повреждений спинного мозга (Geron Corporation, США), что привело к приостановлению клинических исследований и дополнению тестирования готового продукта [7, 8].

Риск развития онкологических заболеваний указывается и для некоторых других препаратов на основе клеток в разделе «Предупреждения и меры предосторожности» информационных листов, опубликованных на сайте FDA (Food and Drug Administration, Управление по санитарному надзору за качеством пищевых продуктов и медикаментов): ALLOCORD, HPC Cord Blood производства SSM Cardinal Glennon Children's Medical Center, США [9]; Azficel-T, Laviv производства Fibrocell Technologies, Inc. США [10]; Clevecord, HPC Cord Blood производства Cleveland Cord Blood Centre. США [111]: Hemacord. HE-MACORD (HPC Cord Blood) производства New York Blood Center, США [12]; Ducord, HPC Cord Blood производства Duke University School of Medicine, США [13]; HPC Cord Blood производства Clinimmune Labs, University of Colorado Cord Blood Bank, США [14]; Epicel (cultured epidermal autografts) производства Vericel Corporation [15].

Для исключения возможности использования при терапии трансформированных клеток и снижения вероятности посттрансплантационного развития опухолей некоторыми производителями на стадии доклинических исследований производился кариологический анализ клеточного материала: Dermagraft, Interactive Wound Dressing производства Advanced Tissue Sciences, США [16]; Orcel (Bilayered Cellular Matrix), Interactive Wound and Burn Dressing производства Ortec International, Inc, США [17]. На стадии доклинических исследований препарата Holoclar производства Chiesi Farmaceutici S.p.A. (Италия) для подтверждения отсутствия генетической нестабильности препарата наряду с другими тестами (выявление пролиферативного потенциала в присутствии факторов роста/отсутствии адгезивной поверхности) при оценке токсичности был проведен анализ кариотипа клеток на пассажах, превышающих необходимое число для производства препарата. Анализ кариотипа включал подсчет числа хромосом в клетке, выявление процентного содержания полиплоидных и анеуплоидных клеток, а также структурных аномалий в 50 метафазных клетках из шести партий клеточного продукта [18].

Оценка стабильности и канцерогенного потенциала клеточных линий в регуляторных документах ЕС и США

Особенности состава и механизма (механизмов) действия препаратов на основе клеток, отличающими их от классических фармацевтических лекарственных средств (низкомолекулярных и высокомолекулярных биологических препаратов) и медицинских устройств, часто не позволяют оценивать их безопасность с помощью традиционных стандартизованных подходов к доклинической оценке токсичности. Опираясь на основные токсикологические принципы, лежащие в основе стандартных токсикологических исследований, а также учитывая биологические особенности препаратов на основе клеток и предполагаемые показания к их применению, необходимо использовать гибкий научно обоснованный подход при рассмотрении вопросов безопасности. Такой подход должен рас-

пространяться в том числе и на оценку туморогенности экспериментального препарата [19, 20]. Туморогенность препаратов на основе клеток следует отличать от онкогенности классических фармацевтических лекарственных средств вследствие возможной малигнизации клеток, входящих в состав клеточного препарата, а не только клеток организма пациента. Риск возникновения неопластической трансформации клеточной составляющей препаратов рекомендуется контролировать на пассажах, превышающих лимит культивирования, необходимого для производства препарата [21].

В США отсутствие туморогенного потенциала у препаратов при терапии соматическими клетками является одной из главных составляющих безопасности — критического параметра качества (CQAs, critical quality attributes) [21]. Тестирование клеточных продуктов на туморогенность для гарантии качества и целостности продукта требуется как в процессе производства (*in-process*), так и при оценке качества конечного продукта, в том числе до и после криоконсервации при банкировании клеточной линии. Особенно важно подвергать тестированию на туморогенность плюрипотентные культуры клеток [22].

В Европейском союзе в спецификации на клеточные препараты передовой терапии в соответствии с Директивой Еврокомиссии 2009/120/ЕС [23] кариологическая характеристика, туморогенность, генетическая стабильность определены как необходимые характеристики, указываемые в спецификации готового препарата.

Кроме того, согласно руководству по лекарственным препаратам на основе клеток, на этапе их культивирования *in vitro* необходимо проводить оценку генетической стабильности клеточных линий наравне с определением продолжительности жизни клеточной культуры и максимального числа пассажей, генотипических свойств как первичных клеточных культур, так и устойчивых клеточных линий, в том числе полученных клеточных клонов. Оценка стабильности первичных клеточных культур и устойчивых клеточных линий является обязательным условием претрансплантационного тестирования [20].

При анализе безопасности препарата оценку туморогенного потенциала клеточной культуры, входящей в состав этого препарата, рекомендуется проводить путем анализа пролиферативного потенциала, реакций на стимулы апоптоза и генной экспрессии. При этом обязательно требуется исследование хромосомной целостности [20].

Ситуацию может усложнить применение к клеткам, лежащим в основе БМКП, различных методов обработки (физических, химических или генетических), что также может привести к индуцированному мутагенезу и возникновению генетической нестабильности. В случае генетической модификации клеток Европейским медицинским агентством рекомендуется следовать требованиям, изложенным не только в Руководстве по лекарственным препаратам на основе клеток [20], но и в Примечаниях к руководству по вопросам качества, особенностям проведения доклинических и клинических исследований, основанных на переносе генов [24]. Причем при проведении доклинических исследований препаратов на основе генетически модифицированных соматических клеток необходимо учитывать возможность трансформации не только клеточного материала самого препарата, но и клеток других тканей решипиента в связи с возможностью переноса и интеграции модифицирующей генетической конструкции (вирусных частиц, векторных конструкций) из вводимых клеток. Цитогенетический анализ костного мозга и/или клеток периферической крови может помочь в выявлении такого инсерционного мутагенеза [24].

Оценку генетической стабильности и функциональной целостности, особенно при длительном пассировании клеток *in vitro*, необходимо проводить и при создании банков клеточных культур, которые в дальнейшем будут использоваться для приготовления БМКП [25–28]. Так, согласно рекомендациям ВОЗ, параметр «стабильность» клеточного компонента предлагается оценивать на основе результатов секвенирования отдельных измененных последовательностей, а также цитогенетического метода — флуоресцентной гибридизации *in situ* (FISH, Fluorescence in situ hybridization) [25].

Применяя методы кариотипирования метафазных хромосом и FISH, в Банке стволовых клеток при институте стволовых клеток человека (г. Москва) осуществляли оценку генетической стабильности линий мезенхимальных стволовых клеток, планируемых для дальнейшего использования в клинических целях [29].

Причины генетической нестабильности

Неиммортализованные клетки человека имеют преимущественно диплоидный кариотип: 46,XX (женский кариотип) или 46,XY (мужской кариотип) — основная характеристика, выявляемая с помощью методов цитогенетического анализа и подтверждающая генетическую стабильность клеток на хромосомном и геномном уровнях [30]. Клеточные линии дифференцированных нормальных диплоидных клеток человека имеют ограниченный срок жизни *in vitro*. В норме при длительном культивировании такие клетки исчерпывают пролиферативный потенциал, проявляют признаки репликативного старения и погибают [31].

Выделяют следующие кариологические признаки стабильного генома клеток:

- 1 низкая вариабельность клеток по числу хромосом;
- наличие четко выраженного модального класса числа хромосом;
- 3 минимальная межклеточная кариотипическая гетерогенность популяции клеток [32].

Условия культивирования, особенно при длительном пассировании культур, оказывают существенное влияние на генетическую стабильность клеток, приводя к отклонениям от нормальной структуры кариотипа, т.е. возникновению различных структурных и численных хромосомных аномалий. При культивировании клеток в отдаленных пассажах в клеточных культурах могут возникать новые клоны с хромосомными перестройками, которые могут характеризоваться более высокими темпами пролиферации и лучшей выживаемостью после криоконсервации, чем исходные клетки с нормальным геномом [5, 33, 34]. При нестабильности генома (главным образом, под влиянием условий культивирования) наряду с клональными перестройками хромосом появляются неклональные, которые создают генетическое разнообразие в популяции, что обеспечивает ее выживание и адаптацию к неблагоприятным условиям [35].

Наличие в клетках хромосомных аномалий может стать причиной злокачественной их трансформации и привести к развитию различных онкологических заболеваний у пациентов, для лечения которых использовались эти клетки [4].

Федеральный закон от 23.06.2016 № 180-ФЗ запрещает применение в медицинской практике БМКП, в состав которых входят эмбриональные стволовые клетки (ЭСК), которые обладают плюрипотентностью и неограниченным пролиферативным потенциалом. Последнее свойство присуще также и опухолевым клеткам. Существует много работ, подтверждающих наличие значительных генетических изменений ЭСК при дли-

тельном культивировании [36–38]. В медицинской практике были зарегистрированы случаи развития опухолей у пациентов при трансплантации ЭСК [39].

Что касается дифференцированных клеток и стволовых клеток постнатального периода, то трансформация их тоже возможна, несмотря на то что отмечается сравнительно редко. Результаты ряда исследований подтверждают генетическую стабильность таких клеток на протяжении времени длительного культивирования [40], вплоть до наступления старения и гибели клеточных линий [41, 42]. Однако опубликованы научные работы, выявившие наличие генетической нестабильности и хромосомные аномалии в стволовых клетках постнатального периода, в том числе и на ранних пассажах культивирования [43, 44], причем в некоторых случаях наряду с трансформацией отмечалась и малигнизация клеточной линии [45, 46].

Считается, что применение клеток, полученных на ранних пассажах культивирования (не позднее 6-го), снижает вероятность возникновения генетических изменений, приводящих к селективной пролиферации (клонообразованию) генетически аномальных клеток. Поэтому при использовании линий клеток в регенеративной медицине во избежание возрастания кариотипической нестабильности длительность культивирования должна быть сокращена до минимума, а также при культивировании следует избегать добавления большого количества ростовых факторов [47, 48].

Есть ряд работ, подтверждающих, что генетическая нестабильность клеток может зависеть не только от условий и продолжительности культивирования, но и от донорского материала. Это связано с возможностью попадания небольшого количества аномальных клеток непосредственно в биопсийный материал донора [44, 49]. Различия в скорости возникновения генетической нестабильности при пассировании клеточной линии, а также различия в особенностях возникающих хромосомных аномалий и их частоте встречаемости в культуре клеток могут наблюдаться даже у одного типа клеток, но выделенных из разных тканей, например у МСК из жировой ткани и у МСК из костного мозга [43].

Существует мнение, что многие геномные изменения могут быть безвредными при дальнейшем использовании таких клеток в клеточной терапии [44, 50]. Однако неясно, какие конкретные мутации являются опасными, а какие нет, т.е. какие мутации приведут к кариотипическим изменениям, сопряженным с онкогенными процессами, а какие окажутся нейтральными [50]. Даже сходство между аберрациями в культурах клеток и хромосомными аномалиями, зарегистрированными в опухолевых клетках онкологических больных, не означает обязательного приобретения культивируемыми клетками туморогенных свойств [40]. Влияние конкретных мутаций на иммортализацию клеток — широко обсуждаемый вопрос с большим числом спорных моментов.

Тем не менее был выявлен неслучайный характер вовлечения хромосом и отдельных хромосомных районов в численные и структурные перестройки в условиях кариотипической нестабильности линии. Например, при культивировании клеток *in vitro* обеспечивается сохранение дисомии по всем аутосомам при возможной частичной или полной утрате половых хромосом [51, 52]. В то же время в культивируемых опухолевых клетках могут быть выявлены небольшие потери хромосомного материала (в том числе нуллисомии) [53]. Было замечено, что в опухолевых клетках, культивируемых *in vitro*, сохраняются не только первичные онкогенные хромосомные перестройки, но и весь комплекс реаранжировок генома опухолевых клеток *in vivo* [32, 54].

Для большого числа хромосомных аномалий и полиморфизмов доказано отсутствие фенотипических, в том числе патологических, изменений у людей. К таким аномалиям, например, относят наличие небольшого процента тетраплоидных клеток, морфологический полиморфизм конститутивного гетерохроматина хромосом 1, 9, 16 и Y, морфологический полиморфизм коротких плечей акроцентричных хромосом p13, p14 и p15, транслокации районов ядрышковых организаторов с акроцентричных хромосом на другие с последующим образованием хромосом, несущих интерстициальный сателлитный район, морфологический полиморфизм небольших эухроматиновых и гетерохроматиновых районов целого ряда хромосом, наличие ломких сайтов во многих участках разных хромосом, а также довольно большое число несбалансированных хромосомных структурных перестроек [30, 55].

Другие хромосомные аномалии, наоборот, являются существенными для злокачественной трансформации. Например, микроаберрации, затрагивающие отдельные районы хромосомы 12 или 20, где расположены гены-онкосупрессоры и гены, ассоциированные с плюрипотентностью клеток [56].

Однако нередко цитогенетическими методами затруднительно выявить перестройки, затрагивающие небольшие районы хромосом. Сложности зачастую вызывает и точное определение точек разрывов на хромосомах. Кроме того, в некоторых случаях хромосомные перестройки легко перепутать с полиморфизмом и допустить диагностическую ошибку.

Цитогенетические методы оценки генетической стабильности клеточных линий

Для оценки генетической стабильности клеток используются современные цитогенетические и молекулярные методы анализа.

Наиболее часто используемой группой методов, безусловно, являются методы классического цитогенетического анализа, в том числе окрашивание метафазных хромосом красителем Гимза (G-, R-, С-дифференциальные окрашивания и т.д.). Идентификация хромосом осуществляется на основе выявления определенных цитогенетических характеристик отдельных хромосом (размера, центромерного индекса, наличия вторичных перетяжек, рисунка чередования позитивно и негативно окрашенных районов хромосом) [57, 58]. Среднее разрешение таких методов составляет 5-10 Мб. Методы дифференциального окрашивания позволяют выявить численные и относительно крупные структурные хромосомные аномалии. Возможно выявление 10 % мозаицизма при анализе статистически значимого числа клеток [59, 60]. Существенным преимуществом метода G-окрашивания является сохранение окраски в течение длительного времени. Для использования этих методов не требуется дорогостоящие оборудование и реактивы, но методически они обладают рядом сложностей, и осуществление их требует квалифицированного персонала.

Разновидностью дифференциального окрашивания является окрашивание с применением флуоресцентных красителей. Существует целый ряд флуоресцентных красителей, специфически окрашивающих нуклеиновые кислоты. Так, при использовании кинакрина (акрихина) и его производных на хромосомах человека проявляется рисунок дифференциального окрашивания, при котором Q-позитивно окрашиваются районы конститутивного гетерохроматина, а также наблюдается сильное свечение конца длинного плеча Y хромосомы [61]. С помощью производных акридина, а также 4'-6-диамино-2-фенилиндола (DAPI) и Hoechst 33258 возможно получить AT-специфичный бэндинг, во многом схожий

с рисунком G-окрашивания [62]. GC-специфичное окрашивание ДНК дают ряд антибиотиков: хромомицин A3 (СМА) [63], митрамицин, широко используемый для окрашивания ДНК в проточной флуориметрии [64], оливомицин, а также дауномицин и адриамицин [65], которые позволяют получить на хромосомах рисунок, обратный G-окрашиванию.

Методы дифференциального окрашивания возможно применять при скрининговой оценке генетической стабильности клеточных линий на разных пассажах.

Для более точной идентификации хромосомных перестроек и выявления точной локализации точек разрывов хромосом применяют молекулярно-цитогенетические методы, основанные на флуоресцентной гибридизации in situ с использованием специфичных к интересующим геномным последовательностям ДНК-зондов (ДНК-проб). Данная группа методов позволяет обнаруживать дупликации, делеции, инсерции и транслокации участков хромосом размером более 5 кб [58]. Метод удобен при поиске хромосомных аномалий по известным меткам, но для скрининга пула клеток на наличие генетической нестабильности обычно не применяется. Однако в случаях анализа дифференцированных неиммортализованных клеток, когда получение метафазных хромосом затруднено в связи со сниженной пролиферативной активностью клеток, возможно использование FISH на интерфазных ядрах. FISH на интерфазных ядрах позволяет выявлять только численные изменения хромосом или их районов размером от 2 Мб. В случае использования FISH на ДНК фибриллах (fibre FISH) возможно довести разрешение до 500 кб [58]. Методы FISH-анализа позволяют выявлять 2 % мозаицизм.

С помощью молекулярно-цитогенетических методов, основанных на использовании хромосом-специфичных ДНК-зондов ко всем хромосомам генома, меченных разными комбинациями из пяти флуорохромов с различными спектральными характеристиками (24-цветная FISH/M-FISH и SKY-анализ), возможно диагностировать сложные комплексные хромосомные перестройки и идентифицировать хромосомный материал маркерных хромосом, происхождение которого затруднительно установить методами дифференциального окрашивания [66]. Методы многоцветной FISH позволяют выявлять сбалансированные и несбалансированные структурные хромосомные перестройки, размером превышающие 5–10 Мб, а также анеуплоидии. Однако выявление внутрихромосомных структурных перестроек затруднительно.

Определять количественные изменения районов хромосом (делеции, дупликации) наряду с численными хромосомными аномалиями позволяет метод сравнительной геномной гибридизации (СGH, Comparative genomic hybridisation) [67]. Этот метод основывается на совместной гибридизации референтной ДНК (ДНК нормального диплоидного генома) и ДНК испытуемого образца, меченных разными флуорохромами, на хромосомах нормальных диплоидных клеток. Метод не позволяет идентифицировать хромосомные копии размером меньше 10 Мб, аномалии, встречающиеся менее чем в 50 % клеток, а также выявлять сбалансированные хромосомные перестройки. Таким образом, СGH является хорошим дополнением для методов многоцветной FISH при полногеномном исследовании.

Для определения уровня хромосомных аберраций, что часто делают при оценке устойчивости генома при воздействии различных мутагенов физической и химической природы, практикуется использование и других цитогенетических методов, например монохромное (рутинное) окрашивание красителем Гимзы [68], микроядерный тест [69], тест ДНК комет [70] и др. Но подобные методы позволяют выявлять только круп-

ные хромосомные аберрации, зачастую без установления точной их природы, или даже просто произвести количественную оценку хромосомных аберраций, возникающих в результате мутагенеза. В настоящее время широкое распространение получают молекулярные методы, например сравнительная геномная гибридизация на чипах (array-CGH) [71] или метод анализа единичного нуклеотидного полиморфизма (SNP, Single nucleotide polymorphism) [72]. Главным преимуществом методов молекулярного анализа является высокое разрешение (100 кб и менее), а также отсутствие необходимости приготовления хромосомных препаратов: получение метафазных пластинок хромосом или интерфазных ядер. Однако методы не позволяют обнаруживать сбалансированные хромосомные транслокации и выявлять клональный мозаицизм с содержанием клеток клона в популяции менее 20 % в случае array-CGH и 7 % в случае SNP. Кроме того, существуют сложности с интерпретацией результатов вариабельности копийности полиморфных участков генома.

Заключение

Таким образом, методы цитогенетического анализа клеточных линий, входящих в состав БМКП, позволяют получить данные об их генетической стабильности и потенциальной возможности злокачественной трансформации, что является важным аспектом в обеспечении безопасности БМКП и оценке его качества. Выбор метода исследования может зависеть от типа клеток и особенностей их культивирования, доступности оборудования, необходимости быстрого получения результатов. Наиболее целесообразным является подход, при котором оценку генетической стабильности проводят цитогенетическими методами в комплексе с молекулярно-биологическими для выявления всех возможных генетических аномалий на разных уровнях организации генома.

Линии клеток с выявленной генетической нестабильностью могут использоваться для фундаментальных исследований, особенно в области канцерогенеза, или в качестве моделей для фармакологических исследований, но применение их в медицинских целях невозможно, так как сопряжено со многими рисками для здоровья пациентов.

Информация об отсутствии конфликта интересов. Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

Литература / References

- Федеральный закон от 23 июня 2016 г. № 180-ФЗ «О биомедицинских клеточных продуктах». [The Federal Law of 23 June, 2016 No. 180-FZ «On Biomedical Cell Products» (In Russ.)]
- Mason C, Manzotti E. Regen: The Industry Responsible for Cell-Based Therapies. Regen Med. 2009; 4(6): 783–5.
- 3. Мельникова EB, Меркулова OB, Рачинская OA, Чапленко AA, Меркулов BA, Олефир ЮВ и др. Современные подходы к проведению оценки качества препаратов для клеточной терапии. Биофармацевтический журнал 2016; 8(4): 35–46. [Melnikova EV, Merkulova OV, Rachinskaya OA, Chaplenko AA, Merkulov VA, Olefir YuV, et al. Modern Approaches to Quality Control of Cell-Therapy Products. Russian Journal of Biopharmaceuticals 2016; 8(4): 35–46 (In Russ.)]
- 4. Duesberg P, Li R. Multistep Carcinogenesis: a Chain Reaction of Aneuploidizations. Cell Cycle 2003; 2(3): 202–10.
- Rubio D, Garcia-Castro J, Martín MC, de la Fuente R, Cigudosa JC, Lloyd AC, Bernad A. Spontaneous Human Adult Stem Cell Transformation. Cancer Res. 2005; 65(8): 3035–9.

- 6. Бочков НП, Никитина ВА, Рослова ТА, Чаушев ИН, Якушина ИИ. Клеточная терапия наследственных болезней. Вестник РАМН 2008; (10): 20–8. [Bochkov NP, Nikitina VA, Roslova TA, Chaushev IN, Yakushina II. Cellular Therapy of Hereditary Diseases. Annals of the Russian Academy of Medical Sciences 2008; (10): 20–8 (In Russ.)]
- 7. Goldring CE, Duffy PA, Benvenisty N, Andrews PW, Ben-David U, Eakins R, et al. Assessing the Safety of Stem Cell Therapeutics. Cell Stem Cell 2011; 8(6): 618–28.
- 8. Geron. About GRNOPC1. Preclinical Safety Studies: Animal Toxicology Testing of GRNOPC1. Available from: http://ir.geron.com/phoenix.zhtml?c=67323&p=irol-newsArticle&ID=1636251
- ALLOCORD (HPC Cord Blood). Package Insert. Available from: https://www.fda.gov/downloads/ BiologicsBloodVaccines/CellularGeneTherapyProducts/ ApprovedProducts/UCM354696.pdf
- LAVIV (Azficel-T). Package Insert and Patient Information Sheet. Available from: https://www.fda.gov/downloads/ BiologicsBloodVaccines/CellularGeneTherapyProducts/ ApprovedProducts/UCM260489.pdf
- 11. CLEVECORD (HPC Cord Blood). Package Insert.
 Available from: https://www.fda.gov/downloads/
 BiologicsBloodVaccines/CellularGeneTherapyProducts/
 ApprovedProducts/UCM519084.pdf
- 12. HEMACORD (HPC, cord blood). Package Insert. Available from: https://www.fda.gov/downloads/ BiologicsBloodVaccines/CellularGeneTherapyProducts/ ApprovedProducts/UCM279612.pdf
- DÜCORD (HPC Cord Blood). Package Insert with Infusion Instructions. Available from: https://www.fda.gov/downloads/ BiologicsBloodVaccines/CellularGeneTherapyProducts/ ApprovedProducts/UCM322732.pdf
- 14. HPC, Cord Blood. Package Insert. Available from: https://www.fda.gov/downloads/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/UCM305761.pdf
- 15. Epicel (Cultured Epidermal Autografts). Directions for Use. Available from: https://www.fda.gov/downloads/ BiologicsBloodVaccines/BloodBloodProducts/ ApprovedProducts/PremarketApprovalsPMAs/UCM538555.pdf
- Dermagraft (Interactive Wound Dressing). Summary of Safety and Effectiveness Data. Available from: https://www. accessdata.fda.gov/cdrh_docs/pdf/p000036b.pdf
- 17. Orcel (Bilayered Cellular Matrix) (Interactive Wound and Burn Dressing). Summary of Safety and Effectiveness Data. Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf/p010016b.pdf
- 18. Holoclar (ex vivo Expanded Autologous Human Corneal Epithelial Cells Containing Stem Cells). EPAR Summary for the Public. EMEA/H/C/002450. Available from: http://www. ema.europa.eu/docs/en_GB/document_library/EPAR_-_ Summary_for_the_public/human/002450/WC500183406.pdf
- 19. Guidance for Industry: Preclinical Assessment of Investigational Cellular and Gene Therapy Products. Food and Drug Administration 2013. Available from: https:// www.fda.gov/downloads/BiologicsBloodVaccines/Gu idanceComplianceRegulatoryInformation/Guidances/ CellularandGeneTherapy/UCM376521.pdf
- Guideline on Human Cell-Based Medicinal Products (EMEA/CHMP/410869/2006). Available from: http://www. ema.europa.eu/docs/en_GB/document_library/Scientific_ guideline/2009/09/WC500003894.pdf
- 21. Guidance for FDA Reviewers and Sponsors. Content and Review of Chemistry, Manufacturing, and Control (CMC). Information for Human Somatic Cell Therapy Investigational New Drug Applications (INDs). Food and Drug Administration 2008. Available from: https://www.fda.gov/downloads/biologicsbloodvaccines/guidancecomplianceregulatoryinfor mation/guidances/xenotransplantation/ucm092705.pdf

- 22. Carpenter MK, Frey-Vasconcells J, Rao MS. Developing Safe Therapies from Human Pluripotent Stem Cells. Nat Biotechnol. 2009; 27(7): 606–13.
- 23. Commission Directive 2009/120/EC of 14 September 2009
 Amending Directive 2001/83/EC of the European Parliament
 and of the Council on the Community Code Relating to
 medicinal products for human use as Regards Advanced
 Therapy Medicinal Products. Available from: https://
 ec.europa.eu/health//sites/health/files/files/eudralex/vol-1/
 dir_2009_120/dir_2009_120_en.pdf
- 24. Committee for Proprietary Medicinal Products (CPMP). Note for Guidance on the Quality, Preclinical and Clinical Aspects of Gene Transfer Medicinal Products (CPMP/BWP/3088/99). Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/10/WC500003987.pdf
- 25. Expert Committee on Biological Standardization. Recommendations for the Evaluation of Animal Cell Cultures as Substrates for the Manufacture of Biological Medicinal Products and for the Characterization of Cell Banks. Available from: http://www.who.int/biologicals/Cell_Substrates_clean_ version_18_April.pdf
- 26. ICH Topic Q 5 D. Quality of Biotechnological Products: Derivation and Characterization of Cell Substrates Used for Production of Biotechnological/Biological Products (CPMP/ ICH/294/95). Available from: http://www.ema.europa.eu/ docs/en_GB/document_library/Scientific_guideline/2009/09/ WC500003280.pdf
- 27. Coecke S, Balls M, Bowe G, Davis J, Gstraunthaler G, Hartung T, et al. Guidance on Good Cell Culture Practice. A Report of the Second ECVAM Task Force on Good Cell Culture Practice. Altern Lab Anim. 2005; 33(3): 261–87.
- 28. Consensus Guidance for Banking and Supply of Human Embryonic Stem Cell Lines for Research Purposes. Stem Cell Rev. 2009; 5(4): 301–14.
- 29. Астрелина ТА. Банк стволовых клеток: от науки к практике. М.: ЦНТБ ПП; 2015. [Astrelina TA. Bank of Stem Cells: from Science to Practice. Moscow: CSTL FI; 2015 (In Russ.)]
- 30. McGowan-Jordan J, Simons A, Schmid M, eds. An International System for Human Cytogenomic Nomenclature (ISCN). Basel, Freiburg: Karger; 2016.
- 31. Hayflick L. The Limited In Vitro Lifetime of Human Diploid Cell Strains. Exp Cell Res. 1965; 37: 614–36.
- 32. Мамаева СЕ. Закономерности кариотипической эволюции клеток в культуре. Цитология 1996; 38(8): 787–814. [Mamaeva SE. The Patterns of the Karyotypic Evolution of Cells in Culture. Cytology 1996; 38(8): 787–814 (In Russ.)]
- Tolar J, Nauta AJ, Osborn MJ, Panoskaltsis Mortari A, McElmurry RT, Bell S. Sarcoma Derived from Cultured Mesenchymal Stem Cells. Stem Cells 2007; 25(2); 371–9.
- 34. Borghesi A, Avanzini MA, Novara F, Mantelli M, Lenta E, Achille V, et al. Genomic Alterations in Human Umbilical Cord-Derived Mesenchymal Stromal Cells Call for Stringent Quality Control Before Any Possible Therapeutic Approach. Cytotherapy 2013; 15(11): 1362–73.
- 35. Ye CJ, Liu G, Bremer SW, Heng HH. The Dynamics of Cancer Chromosomes and Genomes. Cytogenet Genome Res. 2007; 118(2–4): 237–46.
- 36. Maitra A, Arking DE, Shivapurkar N, Ikeda M, Stastny V, Kassauei K, et al. Genomic Alterations in Cultured Human Embryonic Stem Cell. Nat Genet. 2005; 37(10): 1099–103.
- 37. Richards M, Tan S, Fong CY, Biswas A, Chan WK, Bongso A. Comparative Evalution of Various Human Feeders for Prolonged Undifferentiated Growth of Human Embryonic Stem Cells. Stem Cell 2003; 21(5): 546–56.
- 38. Skottman H, Hovatta O. Culture Conditions for Human Embryonic Stem Cells. Reproduction 2006; 132(5): 691–8.
- 39. Anisimov SV, Morizane A, Correia AS. Risks and Mechanisms of Oncological Disease Following Stem Cell Transplantation. Stem Cell Rev. 2010; 6(3): 411–24.

- Ben-David U, Mayshar Y, Benvenisty N. Large-scale Analysis Reveals Acquisition of Lineage-Specific Chromosomal Aberrations in Human Adult Stem Cells. Cell Stem Cell 2011; 9(2): 97–102.
- 41. Bernardo ME, Zaffaroni N, Novara F, Cometa AM, Avanzini MA, Moretta A. Human Bone Marrow Derived Mesenchymal Stem Cell do not Undergo Transformation after Long-Term in vitro Culture and Do Not Exhibit Telomere Maintenance Mechanisms. Cancer Res. 2007; 67(19): 9142–9.
- 42. Домнина АП, Фридлянская ИИ, Земелько ВИ, Пуговкина НА, Ковалева ЗВ, Зенин ВВ и др. Мезенхимные стволовые клетки эндометрия человека при длительном культивировании не подвергаются спонтанной трансформации. Цитология 2013; 55(1): 69–74. [Domnina AP, Fridlianskaia II, Zemelko VI, Pugovkina NA, Kovaleva ZV, Zenin VV, et al. Mesenchymal Stem Cells of Human Endometrium do not Undergo Spontaneous Transformation during Long-Term Cultivation. Cytology 2013; 55(1): 69–74 (In Russ.)]
- 43. Бочков НП, Воронина ЕС, Катосова ЛД, Никитина ВА. Цитогенетическое исследование мультипотентных мезенхимных стромальных клеток человека в процессе культивирования. Медицинская генетика 2009; 8(12): 3–6. [Bochkov NP, Voronina ES, Katosova LD, Nikitina VA. Cytogenetic Analysis of Human Multipotent Mesenchymal Stromal Cells during Cultivation. Medical Genetics 2009; 8(12): 3–6 (In Russ.)]
- 44. Tarté K, Gaillard J, Lataillade JJ, Fouillard L, Becker M, Mossafa H, et al. Clinical-Grade Production of Human Mesenchymal Stromal Cells: Occurrence of Aneuploidy without Transformation. Blood 2010; 115(8): 1549–53.
- 45. Попов БВ, Петров НС, Михайлов ВМ, Томилин АН, Алексеенко ЛЛ, Гринчук ТМ, Зайчик АМ. Спонтанная трансформация и иммортализация мезенхимных стволовых клеток в культуре in vitro. Цитология 2009; 51(2): 91–102. [Popov BV, Petrov NS, Mikhailov VM, Tomilin AN, Alekseenko LL, Grinchuk TM, Zaichik AM. Spontaneous Transformation and Immortalization of Mesenchymal Stem Cells In Vitro. Cytology 2009; 51(2): 91–102 (In Russ.)]
- 46. Pan Q, Fouraschen SM, de Ruiter PE, Dinjens WN, Kwekkeboom J, Tilanus HW, van der Laan LJ. Detection of Spontaneous Tumorigenic Transformation during Culture Expansion of Human Mesenchymal Stromal Cells. Exp Biol Med (Maywood). 2014; 239(1): 105–15.
- Barkholt L, Flory E, Jekerle V, Lucas-Samuel S, Ahnert P, Bisset L, et al. Risk of Tumorigenicity in Mesenchymal Stromal Cell-Based Therapies — Bridging Scientific Observations and Regulatory Viewpoints. Cytotherapy. 2013; 15(7): 753–9.
- 48. Полянская ГГ. Проблема нестабильности генома культивируемых стволовых клеток человека. Цитология 2014; 56(10): 697–707. [Poljanskaya GG. The Problem of Genomic Instability of Cultivated Human Stem Cells. Cytology 2014; 56(10): 697–707 (In Russ.)]
- 49. Wang Y, Huso DL, Harrington J, Kellner J, Jeong DK, Turney J, McNiece IK. Outgrowth of a Transformed Cell Population Derived from Normal Human BM Mesenchymal Stem Cell Culture. Cytotherapy 2005; 7(6): 509–19.
- Peterson SE, Loring JF. Genomic Instability in Pluripotent Stem Cells: Implications for Clinical Applications. J Biol Chem. 2014; 289(8): 4578–84.
- 51. Мамева СЕ, Литвинчук ЛФ, Пинаев ГП. Закономерности кариотипической изменчивости в перевиваемых клеточных линиях человека. ДАН СССР 1983; 270(2): 456–8. [Mameva SE, Litvinchuk LF, Pinaev GP. Patterns in Karyotypic Variability of Human Continuous Cell Lines. DAN SSSR 1983; 270(2): 456–8 (In Russ.)]

- 52. Мамаева СЕ. Атлас хромосом постоянных клеточных линий человека и животных. М.: Hayч. мир; 2002. [Mamaeva SE. Atlas Chromosomes of Human and Animal Cell Lines. Moscow: Nauch. mir; 2002 (In Russ.)]
- 53. Baronchelli S, Bentivegna A, Redaelli S, Riva G, Butta V, Paoletta L, et al. Delineating the Cytogenomic and Epigenomic Landscapes of Glioma Stem Cell Lines. PloS One 2013; 8(2): e57462.
- 54. Яковлева ТК, Ярцева НМ, Турилова ВИ. Прогрессия кариотипа клеточных линий острого миелобластного лейкоза человека. Клеточные культуры 2011; 27: 34—45. [Yakovleva TK, Yarceva NM, Turilova VI. Progression of Karyotype of Acute Myeloblastic Leukemia Cell Lines. Cell Cultures 2011; 27: 34—45 (In Russ.)]
- 55. Kowalczyk M, Srebniak M, Tomaszewska A. Chromosome Abnormalities without Phenotypic Consequences. J Appl Genet. 2007; 48(2): 157–66.
- 56. Laurent LC, Ulitsky I, Slavin I, Tran H, Schork A, Morey R, et al. Dynamic Changes in the Copy Number of Pluripotency and Cell Proliferation Genes in Human ESCs and iPSCs during Reprogramming and Time in Culture. Cell Stem Cell 2011; 8(1): 106–18.
- 57. Comings DE, Avelino E, Okada TA, Wyandt HE. The Mechanism of C- and G-Banding of Chromosomes. Exp Cell Res. 1973; 77(1): 469–83.
- 58. Sumner AT. Chromosome Banding and Identification Absorption Staining. In: Chromosome Analysis Protocols. Methods in Molecular Biology. Gosden GR, ed. Totowa: Humana Press; 1994. P. 59–81.
- 59. Speicher MR, Carter NP. The New Cytogenetics: Blurring the Boundaries with Molecular Biology. Nat Rev Genet. 2005; 6(10): 782–92.
- 60. Meisner LF, Johnson JA. Protocols for Cytogenetic Studies of Human Embryonic Stem Cells. Methods 2008; 45(2): 133–41.
- 61. Caspersson T, Zech L, Johansson C, Modest EJ. Identification of Human Chromosomes by DNA-Binding Fluorescent Agents. Chromosoma 1970; 30(2): 215–27.
- 62. Schweizer D, Ambros PF. Chromosome Banding. Stain Combinations for Specific Regions. Methods Mol Biol. 1994; 29: 97–112.
- 63. Schweizer D. Reverse Fluorescent Chromosome Banding with Chromomycin and DAPI. Chromosoma 1976; 58(4): 307–24.
- 64. Tobey RA, Crissman HA. Unique Techniques for Cell Analysis Utilizing Mithramycin and Flow Microfluorometry. Exp Cell Res. 1975; 93(1): 235–9.
- 65. Lin CC, Van de Sande JH. Differential Fluorescent Staining of Human Chromosomes with Daunomycin and Adriamycin the D-Bands. Science 1975: 190(4209): 61–3.
- 66. Anderson R. Multiplex Fluorescence In Situ Hybridization (M-FISH). Methods Mol Biol. 2010; 659; 83–97.
- 67. du Manoir S, Speicher MR, Joos S, Schröck E, Popp S, Döhner H, et al. Detection of Complete and Partial Chromosome Gains and Losses by Comparative Genomic In Situ Hybridization. Hum Genet. 1993; 90(6): 590–610.
- 68. Бочков НП. Клиническая генетика. М.: ГЭОТАР-МЕД; 2002. [Bochkov NP. Clinical Genetics. Moscow: GEOTAR-MED: 2002 (In Russ.)]
- 69. Schmid W. The Micronucleus Test. Mutat Res. 1975; 31(1): 9–15.
- 70. Olive PL, Banáth JP. The Comet Assay: a Method to Measure DNA Damage in Individual Cells. Nat Protoc. 2006; 1(1): 23–9.
- 71. Theisen A. Microarray-Based Comparative Genomic Hybridization (aCGH). Nature Education 2008; 1(1): 45.
- 72. Kim S, Misra A. SNP Genotyping: Technologies and Biomedical Applications. Annu Rev Biomed Eng. 2007; 9: 289–320.

Об авторах

Федеральное государственное бюджетное учреждение «Научный центр экспертизы средств медицинского применения» Министерства здравоохранения Российской Федерации, Российская Федерация, 127051, Москва, Петровский бульвар, д. 8, стр. 2

Рачинская Ольга Анатольевна. Эксперт 1 категории лаборатории биомедицинских клеточных продуктов Испытательного центра экспертизы качества лекарственных средств, канд. биол. наук

Меркулов Вадим Анатольевич. Заместитель генерального директора по экспертизе лекарственных средств, д-р мед. наук, профессор

Поступила 18.08.2017 Принята к публикации 08.02.2018

Authors

Federal State Budgetary Institution «Scientific Centre for Expert Evaluation of Medicinal Products» of the Ministry of Health of the Russian Federation, 8/2 Petrovsky boulevard, Moscow 127051, Russian Federation

Olga A. Rachinskaya. 1st Professional Category Expert of the Laboratory of Biomedical Cell Products of the Testing Centre for Evaluation of Medicinal Products' Quality. Candidate of Biological Sciences

Vadim A. Merkulov. Deputy Director-General for Medicinal Products' Evaluation. Doctor of Medical Sciences, Professor

Received 18 August 2017 Accepted 8 February 2018 УДК 615.371+578.7+612.017.1 DOI: 10.30895/2221-996X-2018-18-1-33-41 ШИФР СГ 03.02.02 Ви 14.01.09 Ин

СПЕЦИАЛЬНОСТЬ Вирусология Инфекционные болезни

Анализ эффективности и безопасности вакцин для профилактики клещевого энцефалита

* Т. Ю. Козлова, Л. М. Хантимирова, А. В. Рукавишников, В. А. Шевцов

Федеральное государственное бюджетное учреждение «Научный центр экспертизы средств медицинского применения» Министерства здравоохранения Российской Федерации, Российская Федерация, 127051, Москва, Петровский бульвар, д. 8, стр. 2

В статье приведен анализ эффективности и безопасности вакцин для профилактики клещевого энцефалита (КЭ), разрешенных для применения на территории Российской Федерации. Показано, что используемые в настоящее время вакцины КЭ отечественного и зарубежного производства обеспечивают высокую иммуногенность, безопасность и эпидемиологическую эффективность в регионах с массовым охватом вакцинацией. Все зарегистрированные вакцины соответствуют основным принципам взаимозаменяемости по показаниям к применению с учетом возрастных ограничений, перечню медицинских противопоказаний, схемам вакцинации, составу вакцин, а также показателям безопасности, иммунологической активности и эффективности. Своевременные меры специфической профилактики приводят к снижению заболеваемости КЭ в эндемичных регионах.

Ключевые слова: клещевой энцефалит; вакцинопрофилактика; иммуногенность; реактогенность; эффективность; безопасность; взаимозаменяемость

Для цитирования: Козлова ТЮ, Хантимирова ЛМ, Рукавишников АВ, Шевцов ВА. Анализ эффективности и безопасности вакцин для профилактики клещевого энцефалита. БИОпрепараты. Профилактика, диагностика, лечение 2018; 18(1): 33–41. DOI: 10.30895/2221-996X-2018-18-1-33-41

Analysis of Efficacy and Safety of Tick-Borne Encephalitis Vaccines

* T. Yu. Kozlova, L. M. Khantimirova, A. V. Rukavishnikov, V. A. Shevtsov

Federal State Budgetary Institution «Scientific Centre for Expert Evaluation of Medicinal Products» of the Ministry of Health of the Russian Federation, 8/2 Petrovsky boulevard, Moscow 127051, Russian Federation

This article provides a review on efficacy and safety of tick-borne encephalitis vaccines licensed in the Russian Federation. It highlights that both Russian and imported tick-borne encephalitis vaccines demonstrate high immunogenicity, safety and epidemiological effectiveness in regions with high vaccine coverage. All licensed tick-borne encephalitis vaccines meet interchangeability criteria in terms of indications for use (with due regard to age limits), medical contraindications, vaccination schedules, vaccine composition, as well as safety, immunological activity and efficacy parameters. Timely and specific prophylaxis help reduce the incidence of tick-borne encephalitis in endemic regions.

Key words: tick-borne encephalitis; preventive vaccination; immunogenicity; reactogenicity; efficacy; safety; interchangeability

For citation: Kozlova TYu, Khantimirova LM, Rukavishnikov AV, Shevtsov VA. Analysis of Efficacy and Safety of Tick-Borne Encephalitis Vaccines. BIOpreparations. Prevention, Diagnosis, Treatment 2018; 18(1): 33–41. DOI: 10.30895/2221-996X-2018-18-1-33-41

* Contact person: Kozlova Tatyana Yuryevna; KozlovaTU@expmed.ru

^{*}Контактное лицо: Козлова Татьяна Юрьевна; KozlovaTU@expmed.ru

Клещевой энцефалит (КЭ) — наиболее распространенное и тяжелое природно-очаговое инфекционное заболевание, вызываемое вирусами клещевого энцефалита, передающееся трансмиссивным (через укусы иксодовых клещей) и алиментарным путем (при употреблении в пищу молока инфицированных вирусом животных), клинически проявляющееся инфекционно-токсическим синдромом с преимущественным поражением центральной и периферической нервной системы.

Несмотря на интенсивные и многолетние исследования методов профилактики, эпидемиологии и терапии КЭ, данное заболевание остается проблемой для здравоохранения стран Центральной и Восточной Европы, России, а также Китая, Монголии и Японии [1]. Заболеваемость КЭ регистрируется в 34 странах [2, 3]. По данным научных публикаций, ареал распространения КЭ ежегодно расширяется, случаи КЭ отмечаются на неэндемичных ранее территориях (районы Германии, Литвы, России и Швейцарии) [1, 4, 5].

По данным ВОЗ, ежегодно во всем мире регистрируется 10–12 тыс. случаев заболеваний КЭ, из них в Российской Федерации — около 3000 случаев [5, 6]. Эндемичными по КЭ являются 44 из 85 субъектов Российской Федерации. Наибольшее число больных КЭ регистрируется в Сибирском федеральном округе (49,9 % всех случаев) [7].

Актуальность борьбы с клещевым вирусным энцефалитом обусловлена его медико-социальной значимостью, высоким удельным весом тяжелых форм заболевания, инвалидизации и летальных исходов [1, 8]. Особую тревогу вызывает заболеваемость КЭ детского населения, и в первую очередь детей в возрасте до трех лет [9].

Разнообразие клинических случаев КЭ объясняется генетической вариабельностью вируса клещевого энцефалита. Три подтипа (генотипа) вызывают заболевание человека КЭ:

- 1-й генотип или дальневосточный (восточный) распространен в восточной части Российской Федерации, в Китае и Японии (впервые выявлен в 1931 г. в Приморском и Хабаровском краях);
- 2-й генотип или европейский (западный) преобладает в западной, северной, центральной и восточной частях Европы (выявлен в 1931 г. в Австрии, на территории СССР в 1930—1950-е годы на европейской части территории России и Белоруссии);
- 3-й генотип или сибирский (урало-сибирский) встречается во всех районах Российской Федерации (первые штаммы вируса выделены в 1930-е годы).

На территории Российской Федерации в течение последних десятилетий происходит замещение дальневосточного подтипа сибирским генотипом вируса КЭ [10, 11].

Наиболее широкое распространение сибирского генотипа вируса КЭ было выявлено при использовании молекулярно-генетических методов на территории России в начале XXI столетия.

Дальневосточный вариант (генотип 1) вызывает наиболее тяжелые очаговые формы заболевания КЭ с поражением ЦНС, менинго- или полиэнцефаломиелитом, высокий уровень летальности [12].

Для европейского варианта (генотип 2) характерно более легкое течение заболевания с лихорадочными и менингеальными формами. Летальные исходы регистрируются редко [13].

Заболевание, вызываемое сибирским вариантом вируса КЭ (3-й генотип), протекает менее тяжело, при этом оставаясь весьма опасным и трудноизлечимым. Преобладают лихорадочные и менингеальные проявления болезни. Летальность составляет не более 2,4 % [14].

Противовирусные препараты для лечения КЭ отсутствуют [1]. Единственным эффективным методом защиты от заболевания является своевременная вакцинопрофилактика [3].

Вакцинопрофилактику против КЭ проводят круглогодично в соответствии с национальным календарем профилактических прививок по эпидемическим показаниям [15]. Массовая вакцинация населения природных очагов КЭ способствует снижению уровня заболеваемости.

Обязательной вакцинации подлежит не менее 95 % детского и взрослого населения, проживающего на территориях эндемичных (энзоотичных) по КЭ, а также лица, подверженные профессиональному риску заражения, по роду занятий связанные с пребыванием в природных станциях, лица, выезжающие на эндемичные по КЭ территории [15].

Целью работы является анализ результатов сравнительных исследований иммунологической эффективности и безопасности вакцин в профилактике клещевого энцефалита для применения у детей и взрослых, рассмотрение вопросов взаимозаменяемости вакцин, а также перекрестной защиты в отношении гетерологичных генотипов вируса.

Вакцины для профилактики КЭ

Первая вакцина для профилактики КЭ была разработана в Советском Союзе вскоре после выделения и первичного изучения вируса в 1937 г.

«Мозговая» (первая) инактивированная вакцина, полученная на основе 5 % суспензии ткани мозга мышей, инфицированных вирусом КЭ (штамм Софьин), была эффективна, однако при расширении применения этого препарата обнаружились серьезные побочные эффекты (высокая реактогенность: количество поствакцинальных реакций в отдельные годы достигало 1:20000 привитых) [16]. Впоследствии, в 1960-е годы, в НИИ полиомиелита была разработана культуральная инактивированная вакцина против КЭ (антиген вируса КЭ (штамм Софьин) репродуцирован в культуре клеток куриного эмбриона). Под руководством М.П. Чумакова и Д.К. Львова в Кемеровской области, высокоэндемичной по КЭ, впервые были проведены расширенные клинические исследования: безопасность применения, иммунологическая и эпидемиологическая эффективность. Были получены удовлетворительные результаты: вакцина КЭ (культуральная, неочищенная и неконцентрированная) обладала низкой реактогенностью, высоким уровнем безопасности и иммунологической эффективностью со статистически значимым снижением заболеваемости КЭ среди привитых в сравнении с группами лиц, не получавших эту вакцину. При дальнейшем массовом применении были выявлены случаи поствакцинальных реакций. Кроме того, для создания защитного иммунитета у привитых требовалось введение большой дозы вакцины (взрослым и детям по 1,0 мл подкожно). Схема первичной вакцинации состояла из 4 прививок, ревакцинация — ежегодно. Для устранения вышеуказанных недостатков в 1980-е годы в СССР и за рубежом (Австрия и Германия) были разработаны и внедрены вакцины нового поколения, производство которых включает этапы очистки и концентрирования инактивированного вирусного антигена, полученного при реакторном или роллерном культивировании вируса КЭ. Это позволило получить более безопасный препарат, изменить схему вакцинации и дозировку [17].

Современные вакцины представляют собой культуральные очищенные концентрированные инактивированные сорбированные вакцины.

Вакцины для профилактики КЭ производятся четырьмя предприятиями, два из которых находятся в России (ФГУП «НПО «Микроген» и ФГБНУ «ФНЦИРИП им. М.П. Чумакова

РАН»), а также «Бакстер АГ» в Австрии и «ГСК Вакцинс ГмбХ» в Германии (табл. 1).

Технология производства отечественных и зарубежных вакцин против КЭ практически идентична и состоит из нескольких этапов [18].

- 1. Подготовка и ведение производственного штамма вируса КЭ.
- 2. Подготовка и ведение культуры клеток куриного эмбриона (взвешенной или монослойной).
- 3. Заражение клеточной культуры, репродукция вируса и получение вирусного сбора.
 - 4. Инактивация вирусного сбора формальдегидом.
- 5. Проведение очистки и концентрирования вакцинного вирусного антигена.
- 6. Стабилизация антигена, получение готовой формы вакцины; сорбция жидкого антигена или его лиофилизация.

Доза вакцины содержит специфический инактивированный антиген КЭ — активный компонент, а также вспомогательные вещества (содержание расчетное), состав и количество которых на дозу вакцины указывают в нормативной документации и инструкции по применению.

Современные вакцины КЭ производятся из штаммов дальневосточного (Софьин, 205) или европейского (Нейдорфл, K-23) генотипов [19]. Вакцинные штаммы, используемые при изготовлении вакцин против КЭ, представлены в таблице 1.

Репродукцию вакцинного штамма при производстве вакцин против КЭ осуществляют только в первичных культурах клеток куриных эмбрионов. Следует отметить, что в настоящее время проходят клинические исследования вакцины, разрабатываемой на новом, более стандартизованном субстрате (перевиваемой линии клеток Vero).

Способы очистки и концентрирования вакцин для профилактики КЭ отличаются у разных производителей: например, градиентное ультрацентрифугирование — для вакцины ФСМЕ-Иммун®, гель-фильтрация на макропористом стекле — для вакцины КЭ культуральной очищенной концентрированной инактивированной сухой (далее — КЭ-Москва) и ЭнцеВир®.

В качестве сорбента во всех препаратах применяется гель алюминия гидроксида [1].

При получении готовой формы вакцины может применяться стабилизатор активности очищенного концентрированного вакцинного антигена — 10 % или 20 % раствор альбумина крови человека и сахарозы.

Следует отметить, что в составе вакцин Энцепур® и Энцепур® детский отсутствует стабилизатор — альбумин крови человека. Стабилизация вакцинного антигена достигается при использовании достаточно большого количества сахарозы, которая в составе других вакцин отсутствует или используется в меньших концентрациях [20]. Во всех вакцинах для профилактики КЭ как российского, так и зарубежного производства отсутствует консервант [16].

Титр антигена в вакцине КЭ должен быть не менее 1:128 при использовании метода ИФА. Возможно определение количества антигена вируса КЭ, выраженное в микрограммах на 1 мл [18].

Иммунологическая эффективность и безопасность вакцин для профилактики КЭ

Основным критерием эффективности вакцин является их способность индуцировать специфический иммунитет (иммунологическая эффективность). Иммунологическая эффективность вакцин для профилактики КЭ оценивается путем использования методов ИФА, реакции нейтрализации (РН) или реакции торможения гемагглютинации (РТГА) для выявления специфических антител к вирусу КЭ на различных этапах вакцинации и ревакцинации.

Главным и самым важным критерием качества и применимости вакцин является их безопасность, т.е. отсутствие отрицательного действия на функции организма человека и риска причинения вреда его здоровью [21]. Реактогенность иммунобиологических лекарственных препаратов (ИЛП) относится к так называемым ожидаемым реакциям, т.е. свойство

Таблица 1. Вакцины для профилактики клещевого энцефалита, зарегистрированные в Российской Федерации

N º ⊓/⊓	Торговое наименование	Производ- ственный штамм	Доза, мл	Содержание антигена вируса КЭ, мкг/доза	Производитель
1	Вакцина клещевого энцефалита культуральная очищенная концен- трированная инактивированная су- хая / лиофилизат для приготовления суспензии для внутримышечного введения	Софьин	0,5	Титр не менее 1:128	ФГБНУ «ФНЦИРИП им. М.П. Чумакова РАН», Россия
2	ЭнцеВир® Нео детский / суспензия для внутримышечного введения	205	0,25	0,3–1,5	«Микроген», НПО ФГУП Минздрава России, Россия
3	ЭнцеВир® / суспензия для внутримы- шечного введения	205	0,5	0,6–3,0	«Микроген», НПО ФГУП Минздрава России, Россия
4	Клещ-Э-Вак / суспензия для внутри- мышечного введения	Софьин	0,25 или 0,5	Титр не менее 1:128	ФГБНУ «ФНЦИРИП им. М.П. Чумакова РАН», Россия
5	Энцепур® детский / суспензия для внутримышечного введения	K-23	0,25	0,75	«ГСК Вакцинс ГмбХ», Германия
6	Энцепур® взрослый / суспензия для внутримышечного введения	K-23	0,5	1,5	«ГСК Вакцинс ГмбХ», Германия
7	ФСМЕ-Иммун [®] Джуниор / суспензия для внутримышечного введения	Нейдорфл	0,25	1,19	«Бакстер АГ», Австрия
8	ФСМЕ-Иммун® / суспензия для вну- тримышечного введения	Нейдорфл	0,5	2,38	«Бакстер АГ», Австрия

препарата вызывать местные или общие реакции организма. Количественные показатели ожидаемых реакций оцениваются по результатам клинических исследований, информация вносится в инструкцию по медицинскому применению ИЛП [21].

Для инактивированных вакцин реактогенность определяется прежде всего степенью очистки от чужеродных белков. Белковые компоненты в вакцине КЭ представлены специфическим белком (антигеном вируса КЭ) и балластными белками (гетерологичным белком куриного эмбриона и гомологичным сывороточным альбумином). Требования к качеству вакцинных препаратов в отношении содержания белковых примесей постоянно повышаются. Следует отметить, что реактогенность вакцины против КЭ может быть обусловлена не только балластными белками, но также и самим антигеном вируса КЭ [22]. Тем не менее в настоящее время прямой связи между количественными показателями ожидаемых реакций, представленными в инструкциях по применению зарегистрированных вакцин, от содержания антигена вируса КЭ в дозе вакцины не обнаружено.

Следует отметить, что содержание антигена вируса КЭ в вакцинах отечественного производства для применения у детей варьирует от 0,3 до 1,5 мкг/доза, у взрослых — от 0,6 до 3,0 мкг/доза. Мировой опыт вакцинации детей против КЭ показывает, что для уменьшения реактогенности и риска развития поствакцинальных реакций следует использовать уменьшенную дозировку относительно той, которая применяется для вакцинации взрослых. Допустимая частота общих (системных) реакций (повышение температуры тела, лихорадка) для вакцин представлена в таблице 2. Схема вакцинации препаратами для профилактики КЭ представлена в таблице 3.

Данные систематического обзора и мета-анализа многочисленных клинических исследований [23] свидетельствуют о том, что все современные зарегистрированные вакцины против КЭ обеспечивают высокий профиль безопасности и иммунологическую эффективность.

В настоящее время на территории Российской Федерации зарегистрировано 8 вакцин для профилактики КЭ для применения у взрослых и детей (табл. 1).

Таблица 2. Допустимая частота общих реакций и иммуногенность (по показателю серопротекции) вакцин против клещевого энцефалита (согласно действующим Инструкциям по медицинскому применению препаратов)

Nº ⊓/⊓	Торговое наименование	Возраст вакцини- руемых	Содержа- ние анти- гена вируса КЭ, мкг/доза	Допустимая частота для общих реакций (повышение темпе- ратуры тела, лихорадка)	Иммуногенность (серо- конверсия), %	Источник литера- туры
1	Вакцина клещевого эн- цефалита культуральная очищенная концентриро- ванная инактивирован- ная сухая / лиофилизат для приготовления суспензии для внутримы- шечного введения	С 3 лет и старше	Титр не ме- нее 1:128	37,5°C и выше; не более 7 %	У детей — 96–98; у взрослых — 84–93	[27] [32]
2	ЭнцеВир® Нео детский / суспензия для внутримы- шечного введения	От 3 до 17 лет включи- тельно	0,3–1,5	37,5 °C и выше; не более 4 %	При плановой схеме— 91,6; при экспресс-схеме— 100	[29]
3	ЭнцеВир® / суспензия для внутримышечного введения	С 18 лет	0,6–3,0	37,5 °C и выше; не более 7 %	При плановой схеме — 82–89; при экспресс-схеме — 98	[33]
4	Клещ-Э-Вак / суспензия для внутримышечного введения	От 1 года до 16 лет (доза 0,25 мл); от 16 лет и старше (доза 0,5 мл)	Титр не ме- нее 1:128	От 1 года до 16 лет: от 37,5 до 38,5 °C; часто (> 1/100, < 1/10); от 16 лет и старше: от 37,5 до 38,5 °C; нечасто (> 1/1000, < 1/100)	У детей: при плановой схеме — 63,64—75,86; при экспресс-схеме — 30,0—36,67. У взрослых (показатель серопротекции, %) — 90—100	[30] [36]
5	Энцепур® детский / суспензия для внутримы- шечного введения	С 12 ме- сяцев до 11 лет	0,75	> 38 °С; часто (1–10 %)	94,0–97,8	[30]
6	Энцепур® взрослый / суспензия для внутримы- шечного введения	С 12 лет и старше	1,5	Выше 38 °С; часто (1–10 %)	99,3	[30]
7	ФСМЕ-Иммун® Джуниор / суспензия для внутримы- шечного введения	От 1 года до 16 лет	1,19	У детей 3–15 лет 38–39 °С у 6,8 %; часто (> 1/100, < 1/10)	95,7–100	[30]
8	ФСМЕ-Иммун® / суспен- зия для внутримышечно- го введения	От 16 лет и старше	2,38	Часто > 1/100, < 1/10	99,5	[30]

Таблица 3. Схема вакцинации препаратами для профилактики клещевого энцефалита

Вакцина	Первичный полный курс: плановая вакцинация (1 доза— 0 день)		Первичный полный курс: экстренная вакцинация (1 доза — 0 день)			Первая бустерная доза (год)	Вторая бустерная доза (год)
	2-я доза (месяц)	3-я доза (месяц)	2-я доза	3-я доза	4-я доза (месяц)	доза (год)	доза (год)
Вакцина клещевого энцефалита культуральная очищенная концентрированная инактивированная	1–7	12	_	_	_	3	3
Энцевир®	5–7	12	21–35 сут	42-70 сут	6–12	3	3
Клещ-Э-Вак	1–7	12	14 сут	12 мес.	_	3	3
ФСМЕ-Иммун®	1–3	5–12	14 сут	5–12 мес.	_	3	5
Энцепур®	1–3 (14 сут)	9–12	7 сут	21 сут	12–18	3	5

Примечание. Таблица адаптирована из работы [35].

Эффективность и безопасность вакцин для профилактики КЭ для применения у взрослых

Первая инактивированная вакцина для применения у взрослых — вакцина клещевого энцефалита культуральная очищенная концентрированная инактивированная сухая (ФГБНУ «ФНЦИРИП им. М.П. Чумакова РАН», Россия) (далее — КЭ-Москва) была зарегистрирована на территории СССР в 1984 г. после проведения сравнительных клинических исследований иммунологической эффективности и безопасности. Испытания проводились в Бурятии согласно приказу Министерства здравоохранения СССР (МЗ СССР) бригадой специалистов — врачей эпидемиологов, вирусологов и клиницистов ГИСК им. Л.А. Тарасевича и НИИ полиомиелита и вирусных энцефалитов. В исследовании на контингенте 1500 здоровых пациентов одного пола (мужчины) и одного возраста (18-20 лет) сравнивали два препарата: коммерческую культуральную неконцентрированную неочищенную вакцину КЭ производства НИИ полиомиелита и вирусных энцефалитов АМН СССР и новый препарат (КЭ-Москва) — культуральную концентрированную очищенную инактивированную сухую вакцину с растворителем. Группы пациентов прививали по первичной схеме в дозировке, принятой для коммерческого препарата, или по новой схеме — две прививки с интервалом два месяца в двух дозах — 1,0 и 0,5 мл. Группы пациентов и полученный сывороточный материал были зашифрованы. По результатам, полученным в этих исследованиях, новый препарат не уступал коммерческой вакцине по иммунологической эффективности и уровню безопасности, что позволило рекомендовать новую вакцину КЭ по схеме с интервалом 1-7 мес. (преимущественно 0-2 мес.) в дозе 0,5 мл для взрослых и детей с трех лет. Вакцина НИИ полиомиелита и вирусных энцефалитов (КЭ-Москва) на основании проведенных исследований была зарегистрирована и с успехом применяется до настоящего времени в Российской Федерации.

Вакцина ЭнцеВир® (ФГУП «НПО «Микроген», Россия) была разработана и внедрена в медицинскую практику в 2001 г.

Сравнительное исследование безопасности и иммунологической эффективности вакцины КЭ-Москва и Энцевир® было проведено в 2003 г. ГИСК им. Л.А. Тарасевича. В исследовании приняли участие 400 взрослых. Обе вакцины обладали высокой иммуногенностью (табл. 2) и хорошей переносимостью [24].

Данные клинических исследований вакцин ЭнцеВир® и ФСМЕ-Иммун® (Австрия) показали, что при вакцинации по экстренной схеме вакцина ЭнцеВир® не уступает препарату сравнения — вакцине ФСМЕ-Иммун® по иммунологической эффективности и безопасности [25].

В 2009 г. ФГБНУ «ФНЦИРИП им. М.П. Чумакова РАН» был освоен выпуск препарата «Клещ-Э-Вак». В клиническом рандомизированном сравнительном слепом контролируемом исследовании вакцины Клещ-Э-Вак было показано, что двукратная вакцинация с интервалом 14 или 30 сут приводила к формированию выраженного иммунного ответа, при этом различия в уровне серопротекции и титрах противовирусных антител при плановой и экстренной схемах вакцинации были статистически недостоверны. Корреляции между развитием у реципиентов симптомов местных и общих реакций и иммунологической эффективностью вакцин выявлено не было. Данные о реактогенности и иммуногенности у исходно серопозитивных реципиентов значительно не отличались от данных у исходно серонегативных реципиентов. В качестве препарата сравнения использовали вакцину ЭнцеВир®. Показано, что испытуемая вакцина и препарат сравнения обладали слабой реактогенностью. Не было выявлено статистически достоверных различий в реактогенности вакцин после первой и второй инъекции, а также зависимости реактогенности от пола реципиентов [26].

В мультицентровом рандомизированном сравнительном исследовании вакцин ФСМЕ-Иммун® и Энцепур®, включавшем 3705 человек в возрасте от 16 до 65 лет, было установлено, что вакцина ФСМЕ-Иммун® (2,4 мкг/доза) обладает высокой иммуногенностью и низкой реактогенностью. Следует отметить, что при введении вакцины ФСМЕ-Иммун® был выявлен незначительный уровень фебрильных реакций (0,8 %) в сравнении с препаратом Энцепур® (5,6 %).

Нежелательные реакции, которые возникали после вакцинации бустерными дозами, изучались среди взрослых (возраст 18—67 лет). Добровольцы в качестве первичного курса получали первые две дозы либо вакцины ФСМЕ-Иммун®, либо Энцепур® для взрослых, а 3-ю дозу — только в инъекции ФСМЕ-Иммун®. Побочные действия были преимущественно незначительными и нечастыми [27]. Согласно другому исследованию, вторая бустерная доза Энцепур®, введенная через три года после первой дозы, хорошо переносилась всеми добровольцами. Иммуногенность вакцины ФСМЕ-Иммун® по уровню специфических

антител была выше в сравнении с препаратом Энцепур[®] [26]. Аналогичные данные по профилю безопасности представлены и для вакцин, предназначенных для применения у детей [28].

Эффективность и безопасность вакцин для профилактики КЭ для применения у детей

Первая вакцина для применения у детей — вакцина КЭ-Москва (ФГБНУ «ФНЦИРИП им. М.П. Чумакова РАН») была зарегистрирована в Российской Федерации в 1999 г. Вакцина ЭнцеВир® для применения у детей в возрасте трех лет и старше была зарегистрирована в России в 2001 г. Сравнительное исследование безопасности и эффективности вакцины КЭ-Москва и вакцины Энцевир® (ФГУП «НПО «Микроген», Россия) было проведено в 2003 г. ГИСК им. Л.А. Тарасевича. В исследование было включено 325 детей и подростков в возрасте от 3 до 18 лет. Иммуногенность исследуемых вакцин при двукратной вакцинации была одинаковой: отмечен четырехкратный прирост титров сывороточных антител [29, 30]. Данные по иммуногенности (по показателю сероконверсии) представлены в таблице 2. При оценке местной и системной реактогенности вакцин КЭ-Москва и Энцевир® не зарегистрировано тяжелых побочных явлений, обе вакцины обладали умеренной реактогенностью.

До 2011 г. вакцина ЭнцеВир® для профилактики КЭ у детей применялась в дозировке 0,5 мл. Исходя из мирового опыта профилактики КЭ, был рассмотрен вопрос возможности применения вакцины ЭнцеВир® у детей в дозировке 0,25 мл. В 2011-2012 гг. в НИИ детских инфекций ФМБА России было проведено открытое сравнительное рандомизированное исследование вакцины клещевого энцефалита ЭнцеВир® Нео детский (ФГУП «НПО «Микроген», Россия) в дозе 0,25 мл по двум схемам — плановой и экстренной — у детей в возрасте 3-17 лет. В качестве препарата сравнения использовалась вакцина ФСМЕ-Иммун® Джуниор («Бакстер АГ», Австрия). В исследование было включено 50 детей в возрасте от 3 до 17 лет. которые были распределены на четыре группы. Испытуемая и референтная вакцины вводились внутримышечно двукратно с интервалом 14 (экстренная схема) или 60 сут (плановая схема). Результаты проведенного клинического исследования вакцины ЭнцеВир® в дозе 0,25 мл подтвердили низкий уровень реактогенности и благоприятный профиль безопасности. Регистрировались местные реакции слабой степени выраженности в виде болезненности в месте введения вакцины. Поствакцинальные осложнения отсутствовали. Вакцина ЭнцеВир® Нео показала высокий уровень иммуногенности вне зависимости от схемы введения препарата [31]. Данные по сероконверсии представлены в таблице 2.

Вакцина Клещ-Э-Вак (ФГБНУ «ФНЦИРИП им. М.П. Чумакова РАН», Россия) для применения у детей была зарегистрирована в 2009 г. В рандомизированном сравнительном слепом контролируемом клиническом исследовании вакцины Клещ-Э-Вак было показано, что при двукратном внутримышечном введении одной прививочной дозы (0,25 мл) с интервалом 30 (плановая вакцинация) и 14 сут (экстренная вакцинация) препарат хорошо переносится детьми в возрасте от 1 до 16 лет. В клиническом исследовании приняло участие 212 детей. В качестве препарата сравнения была выбрана вакцина ФСМЕ-Иммун® Джуниор («Бакстер АГ», Австрия) в объеме 0,25 мл. Методом случайно-выборочного распределения дети были распределены на три группы [32]:

- дети в возрасте 5–16 лет, привитые вакциной Клещ-Э-Вак и вакциной сравнения ФСМЕ-Иммун® Джуниор по плановой схеме вакцинации (интервал введения вакцины 30 сут);

- дети в возрасте 1—4 года, привитые вакциной Клещ-Э-Вак и вакциной сравнения ФСМЕ-Иммун® Джуниор по плановой схеме вакцинации;
- дети в возрасте 1–16 лет, привитые вакциной Клещ-Э-Вак и вакциной сравнения ФСМЕ-Иммун® Джуниор по экстренной схеме вакцинации (интервал введения вакцины 14 сут).

Результаты исследования безопасности доказали, что оба препарата малореактогенны. Проявление общих реакций, таких как нарушение сна, ощущение физического дискомфорта, повышение температуры тела, и местных — болезненность, отек/гиперемия в месте введения, были квалифицированы как ожидаемые поствакцинальные реакции слабой и умеренной степени выраженности.

Частота местных и общих реакций на введение вакцины Клещ-Э-Вак как по плановой, так и по экстренной схемам иммунизации у детей не отличалась от таковой при применении вакцины ФСМЕ-Иммун® Джуниор. Показатели серопротекции и сероконверсии при вакцинации по плановой и экстренной схемам сопоставимы для двух вакцин [32]. Данные представлены в таблице 2.

Перекрестная защита вакцин для профилактики КЭ

Возможность применения перечисленных выше вакцин для профилактики КЭ против штаммов дальневосточного и европейского генотипа вируса КЭ была доказана российскими. а также австрийскими и немецкими специалистами. В ряде работ показано, что вакцины для профилактики КЭ обеспечивают перекрестную иммуногенность в отношении всех трех подтипов вируса [33-35]. Имеются данные о том, что вакцины на основе европейского подтипа формируют защитный иммунитет не только в отношении гомологичного штамма вируса, но также и в отношении гетерологичных (дальневосточного и сибирского подтипов) [1]. Доклинические исследования показали, что вакцины на основе дальневосточного и европейского подтипов способствуют выработке у мышей вируснейтрализующих антител к сибирскому подтипу вируса КЭ — Лесопарк-11 и ЕК-328. Среднегеометрический титр антител, определяемых в реакции ИФА и РТГА, был выше у мышей, иммунизированных вакциной ЭнцеВир®, чем при иммунизации другими вакцинами КЭ [36]. Установлена способность вакцины ФСМЕ-Иммун® индуцировать перекрестную вируснейтрализующую активность антител у здоровых доноров к штаммам-гибридам европейского подтипа — Neudoerfl и K-23, дальневосточного подтипа — Sofjin-HO и Oshhima, сибирского подтипа — Vasilchenko [37]. Результаты сравнительного изучения иммуногенности вакцин против КЭ показали высокую иммунологическую активность всех вакцин. Высокие показатели напряженности иммунного ответа свидетельствуют о взаимозаменяемости применяемых вакцин [38].

Взаимозаменяемость вакцин для профилактики КЭ

Постановлением Правительства Российской Федерации от 28.10.2015 № 1154 «О порядке определения взаимозаменяемости лекарственных препаратов для медицинского применения» урегулированы вопросы определения взаимозаменяемости лекарственных препаратов для медицинского применения, которая устанавливается в процессе государственной регистрации препарата на основании сравнения с референтным по параметрам, указанным в статье 27.1 Федерального закона от 12.04.2012 № 61-ФЗ «Об обращении лекарственных средств». Взаимозаменяемость биоаналогового (биоподобного) препарата (биоаналога) определяется с учетом полученных по результатам исследований данных об отсутствии у него кли-

нически значимых различий безопасности, эффективности и иммуногенности по сравнению с референтным препаратом.

В официальных руководящих документах по иммунопрофилактике некоторых зарубежных стран термином «взаимозаменяемость» (interchangeability) обозначают практику перехода от вакцины одного производителя к препарату аналогичного назначения другого производителя. Так, согласно основным принципам взаимозаменяемости вакцин в Канаде (директива Health Canada), взаимозаменяемые вакцины должны иметь одинаковые показания к применению с учетом возрастных ограничений, перечень медицинских противопоказаний, схемы применения, состав антигенов, показатели безопасности, реактогенности, иммуногенности и эффективности.

Согласно пункту 6.11 Санитарно-эпидемиологических правил «СП 3.3.2352—08. Профилактика клещевого вирусного энцефалита», утвержденных постановлением Главного государственного санитарного врача Российской Федерации от 07.03.2008 № 19 (ред. от 20.12.2013), все противоклещевые вакцины взаимозаменяемы, при смене одного препарата на другой интервал между вакцинацией и ревакцинацией, а также между прививками при ревакцинации должен соответствовать сроку, указанному в инструкции препарата, которым проведена последняя прививка.

Прямым доказательством возможности взаимозаменяемости вакцин КЭ может являться сходство технологии производства всех препаратов, сходство состава вакцин и, самое главное, сходство специфической активности вакцин при иммунизации лабораторных животных и показателей иммунологической активности при вакцинации людей.

Анализ предлагаемых схем вакцинации (согласно инструкциям по применению) свидетельствует о том, что вакцины могут быть взаимозаменяемыми по схемам прививок. Важно подчеркнуть, что в настоящее время разрешена вакцинация в летний период года, т.е. в период эпидсезона КЭ, что открывает новые возможности по организации вакцинальных кампаний, особенно городского населения регионов, эндемичных по КЭ.

Заключение

Клещевой вирусный энцефалит остается наиболее тяжелой нейроинфекцией. Последствия заболевания: от полного выздоровления до нарушений здоровья, приводящих к инвалидности и смерти. Специфическое противовирусное лечение КЭ отсутствует, вакцинопрофилактика имеет большое медикосоциальное значение для эндемичных территорий Российской Федерации и остается самым эффективным средством профилактики. Высокий уровень эпидемиологической эффективности вакцинопрофилактики КЭ достигается при охвате прививками не менее 70 % населения.

Результаты многочисленных клинических и постмаркетинговых исследований свидетельствуют о безопасности и эпидемиологической эффективности вакцин для профилактики КЭ.

Схемы применения представленных на российском рынке вакцин идентичны и обеспечивают высокую эффективность (высокий титр вирусспецифических антител не менее чем у 90 % привитых).

Все зарегистрированные в Российской Федерации вакцины для профилактики КЭ взаимозаменяемы и обеспечивают формирование перекрестного иммунного ответа к различным по генотипу антигенам вируса КЭ [33].

Высокий уровень охвата прививками против КЭ в последние 10 лет способствовал значительному снижению заболеваемости в Российской Федерации (в 2016 г. зарегистрировано 2035 случаев КЭ в сравнении с 2007 г., когда было зарегистри-

ровано 3094 случая заболевания), что показывает высокую эффективность вакцинопрофилактики.

Информация об отсутствии конфликта интересов. Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

Литература / References

- WHO. Vaccines against Tick-Borne Encephalitis: WHO Position Paper. WER 2011; 86(24): 241–256. Available from: http://www.who.int/wer/2011/wer8624.pdf?ua=1
- ECDC Technical Report. Epidemiological Situation of Tick-Borne Encephalitis in the European Union and European Free Trade Association Countries. Stockholm; 2012. Available from: https://ecdc.europa.eu/sites/portal/files/ media/en/publications/Publications/TBE-in-EU-EFTA.pdf
- Amicizia D, Domnich A, Panatto D, Lai PL, Cristina ML, Avio U, et al. Epidemiology of Tickborne Encephalitis (TBE) in Europe and Its Prevention by Available Vaccines. Hum Vaccin Immunother. 2013; 9(5): 1163–71.
- Kollaritsch H, Krasilnikov V, Holzmann H, Karganova G, Barrett A, Süss J, et al. Background Document on Vaccines and Vaccination against Tick-Borne Encephalitis. Geneva; 2011. Available from: http://www.who.int/immunization/ sage/6_TBE_backgr_18_Mar_net_apr_2011.pdf
- WHO. Tick-Borne Encephalitis. 2014. Available from: http:// www.who.int/immunization/diseases/tick encephalitis/en/
- 6. Государственный доклад «О состоянии санитарноэпидемиологического благополучия населения в Российской Федерации в 2016 году». [State Report «About Sanitary and Epidemiologic Wellbeing of the Population in the Russian Federation in 2016» (In Russ.)] Available from: http://www.rospotrebnadzor.ru/upload/iblock/0b3/ gosudarstvennyy-doklad-2016.pdf
- 7. Об эпидемиологической ситуации по инфекциям, передающимся клещами, на территории Российской Федерации в 2015 году и прогнозе на 2016 год. [About Epidemiological Situation of Tick-Borne Infections in the Russian Federation in 2015 and the Forecast for 2016 (In Russ.)] Available from: http://rospotrebnadzor.ru/upload/iblock/a02/ob-epid.-situatsii-po-infek.-pered.-kleshchami-v-2015-g.-na-terr.-rf.pdf
- 8. Аитов КА, Малов ИВ, Злобин ВИ, Бурданова ТМ. Характеристика клещевого энцефалита в Иркутской области. Национальные приоритеты России 2014; 3(13): 18–20. [Aitov KA, Malov IV, Zlobin VI, Burdanova TM. Characteristic of Tick-Borne Encephalitis in the Irkutsk Region. National Priorities of Russia 2014; 3(13): 18–20 (In Russ.)]
- 9. Конькова-Рейдман АБ, Злобин ВИ. Клинико-эпидемиологическая характеристика клещевого энцефалита на Южном Урале. Сибирский медицинский журнал 2011; 103(4): 92–5. [Konjkova-Reidman AB, Zlobin VI. Clinical and Epidemiologic Al Characteristics of Tick-Borne Encephalitis in the Southern Urals. Sibirskij Medicinskij Zurnal 2011; 103(4): 92–5 (In Russ.)]
- Demina TV, Dzhioev YP, Verkhozina MM, Kozlova IV, Tkachev SE, Plyusnin A, et al. Genotyping and Characterization of the Geographical Distribution of Tick-Borne Encephalitis Virus Variants with a Set of Molecular Probes. J Med Virol. 2010; 82(6): 965–76.
- 11. Погодина ВВ, Левина ЛС, Скрынник СМ, Травина НС, Карань ЛС, Колясникова НМ и др. Клещевой энцефалит с молниеносным течением и летальным исходом у многократно вакцинированного пациента. Вопросы вирусологии 2013; 58(2): 33–7. [Pogodina VV, Levina LS, Skrynnik SM, Travina NS, Karan LS, Kolyasnikova NM, et al. Tick-Borne Encephalitis with Fulminant Course and Lethal Outcome in Patients After Plural Vaccination. Vopr Virusol. 2013; 58(2): 33–7 (In Russ.)]
- 12. Зуева ЛП, Яфаев ВВ, Дударева ВВ. Общие аспекты иммунопрофилактики. Эпидемиология и вакци-

- нопрофилактика 2002; 2: 6–7. [Zueva LP, Yafaev VV, Dudareva VV. General Aspects of Immunoprophylaxis. Epidemiology&Vaccinal Prevention. 2002; 2: 6–7 (In Russ.)]
- 13. Вотяков ВИ, Злобин ВИ, Мишаева НП. Клещевые энцефалиты Евразии. Вопросы экологии, молекулярной эпидемиологии, нозологии, эволюции. Новосибирск: Наука; 2002. [Votyakov VI, Zlobin VI, Mishaeva NP. Tick-Borne Encephalitis of Eurasia. Issues of Ecology, Molecular Epidemiology, Nosology, Evolution. Novosibirsk: Nauka; 2002 (In Russ.)]
- 14. Gritsun TS, Lashkevich VA, Gould EA. Tick-Borne Encephalitis. Antiviral Res. 2003; 57(1-2): 129-46.
- 15. Санитарно-эпидемиологические правила СП 3.1.3.2352-08 «Профилактика клещевого вирусного энцефалита». [Sanitary-Epidemiological Rules SP 3.1.3.2352-08 «Prevention of Tick-Borne Encephalitis» (In Russ.)] Available from: http://docs.cntd.ru/document/902094567
- 16. Воробьева МС, Меркулов ВА, Ладыженская ИП, Рукавишников АВ, Шевцов ВА. История создания и оценка качества современных вакцин клещевого энцефалита отечественного и зарубежного производства. Ведомости Научного центра экспертизы средств медицинского применения 2013; (3): 40–4. [Vorobieva MS, Merkulov VA, Ladyzhenskaya IP, Rukavishnikov AV, Shevtsov VA. The History and Quality Evaluation of Tick-Borne Encephalitis Vaccine. The Bulletin of the Scientific for Expert Evaluation of Medicinal Products 2013; (3): 40–4 (In Russ.)]
- 17. Воробьева МС, Расщепкина МН, Павлова ЛИ, Быстрицкий ЛД, Ставицкая НХ, Ильченко ТЭ и др. Вакцинопрофилактика клещевого энцефалита на современном этапе и препараты для ее реализации. Бюллетень сибирской медицины 2006; 5(S1): 63–72. [Vorob'eva MS, Rashchepkina MN, Pavlova LI, Bystritsky LD, Stavitskaya NH, Iltchenko TE, et al. The Present Vaccinoprophilaxis of Tick-Borne Encephalitis and Vaccines for Its Provision. Bulletin of Siberian Medicine 2006; 5(S1): 63–72 (In Russ.)]
- 18. Фармакопейная статья 3.3.1.0031.15. Вакцина клещевого энцефалита культуральная очищенная концентрированная инактивированная жидкая сорбированная или сухая в комплекте с растворителем алюминия гидроксида. Государственная фармакопея Российской Федерации. XIII изд. Т. 3. М.; 2015. [Monograph 3.3.1.0031.15. The Cultured Purified Concentrated Inactivated Liquid Sorbed or Dry Tick-Borne Encephalitis Vaccine, Complete with an Aluminum Hydroxide Solvent. State Pharmacopoeia of the Russian Federation. 13th ed. V. 3, Moscow; 2015 (In Russ.)] Available from: http://www.femb.ru/feml
- 19. Chernokhaeva LL, Rogova YuV, Vorovitch MF, Romanova Llu, Kozlovskaya Ll, Maikova GB, et al. Protective Immunity Spectrum Induced by Immunization with a Vaccine from the TBEV Strain Sofjin. Vaccine. 2016; 34(20): 2354–61.
- 20. Воробьева МС, Расщепкина МН. История создания и развитие производства вакцины клещевого энцефалита в России и за рубежом. Дальневосточный журнал инфекционной патологии 2007; 11: 21–6. [Vorob'jova MS, Rasshhepkina MN. The History of the Development and Production of a Tick-Borne Encephalitis Vaccine in Russia and Abroad. Dal'nevostochnyj Zhurnal Infekcionnoj Patologii 2007; 11: 21–6 (In Russ.)]
- 21. Миронов АН, ред. Руководство по проведению клинических исследований лекарственных средств (иммунобиологические лекарственные препараты). Ч. II. М.: Гриф и K; 2012. [Mironov AN, ed. Guideline on Conduct of Clinical Trials of Medicines (Immunobiological Drugs). Part Two. Moscow: Grif and K; 2012 (In Russ.)]
- 22. Леонова ГН, Крылова НВ, Павленко ЕВ, Майстровская ОС. Влияние реактогенности вакцин против клещевого энцефалита на иммунный ответ у вакцинированных людей. Бюллетень сибирской медицины 2006; 5(S1): 72–8. [Leonova GN, Krylova NV, Pavlenko YeV, Maystrovskaya OS. Influence of the Reactogenity of the

- Tick-Borne Encephalitis Vaccines on the Immune Response in Vaccinated People. Bulletin of Siberian Medicine 2006; 5(S1): 72–8 (In Russ.)]
- 23. Domnich A, Panatto D, Arbuzova EK, Signori A, Avio U, Gasparini R, et al. Immunogenicity against Far Eastern and Siberian Subtypes of Tick-Borne Encephalitis (TBE) Virus Elicited by the Currently Available Vaccines Based on the European Subtype: Systematic Review and Meta-Analysis. Hum Vaccin Immunother. 2014: 10(10): 2819–33.
- 24. Красильников ИВ, Мищенко ИА, Шарова ОИ, Билалова ГП, Ставицкая НХ, Воробьева МС и др. Вакцина «Энцевир»: разработка и внедрение в практику. БИОпрепараты. Профилактика, диагностика, лечение 2004; 2(14): 21–4. [Krasilnikov IV, Mischenko IA, Sharova OI, Bilalova GP, Atavitskaya HC, Vorob'eva MS, et al. Vaccine «EnceVir»: Development in Implementaiton in Practical Use. BIOpreparations. Prevention, Diagnosis, Treatment 2004; 2(14): 21–4 (In Russ.)]
- 25. Шутова НА, Шкуратова ОВ, Рузавина ЕВ, Власова НМ, Ставицкая НХ, Воробьева МС и др. Изучение иммунологической активности и реактогенности вакцины «ЭНЦЕВИР®» при иммунизации взрослых по экспрессхеме. Сибирский медицинский журнал 2009; 24(2–2): 30–3. [Shoutova NA, Shkouratova OV, Rouzavina YeV, Vlasova NM, Stavitskaya NKh, Vorobyova MS, et al. Studying Immunologic Activity and Reactogeneity of «Encevir» Vaccine During Immunization Using Express-Scheme. Sibirskij Medicinskij Zurnal 2009; 24(2–2): 30–3 (In Russ.)]
- 26. Ворович МФ, Майкова ГБ, Чернохаева ЛЛ, Романенко ВВ, Анкудинова АВ, Хапчаев ЮХ и др. Иммунологическая эффективность и безопасность вакцины «Клещ-Э-Вак»: «взрослая» форма. Вопросы вирусологии 2017; 62(2): 73–80. [Vorovitch MF, Maikova GB, Chernokhaeva LL, Romanenko VV, Ankudinova AV, Khapchaev YuKh, et al. Immunogenicity and Safety of the Adult the Vaccine «Tick-E-Vac». Vopr Virusol. 2017; 62(2): 73–80 (In Russ.)]
- 27. Loew-Baselli A, Poellabauer EM, Pavlova BG, Fritsch S, Firth C, Petermann R, et al. Prevention of Tick-Borne Encephalitis by FSME-IMMUN® Vaccines: Review of a Clinical Development Programme. Vaccine. 2011; 29(43): 7307–19.
- 28. Wittermann C, Schöndorf I, Gniel D. Antibody Response Following Administration of Two Paediatric Tick-Borne Encephalitis Vaccines Using Two Different Vaccination Schedules. Vaccine. 2009; 27(10): 1661–6.
- 29. Павлова БГ, Ставицкая ИВ, Горбунов МА, Штукатурова ОВ, Помогаева АП, Стронин ОВ и др. Характеристика отечественных концентрированных инактивированных вакцин против клещевого энцефалита при иммунизации детей и подростков. БИОпрепараты. Профилактика, диагностика, лечение 2003; (1): 24–8. [Pavlova BG, Stavitskaya IV, Gorbunov MA, Shtukaturova OV, Pomogayeva AP, Stronin OV, et al. Immunization of Children and Adolescents with Inactivated Vaccines against Tick-Borne Encephalitis. BIOpreparations. Prevention, Diagnosis, Treatment 2003; (1): 24–8 (In Russ.)]
- 30. Kollaritsch H, Paulke-Korinek M, Holzmann H, Hombach J, Bjorvatn B, Barrett A. Vaccines and Vaccination against Tick-Borne Encephalitis. Expert Rev Vaccines. 2012; 11(9): 1103–19.
- 31. Харит СМ, Рулева АА, Фридман ИВ, Начарова ЕП, Алексеева ЛА, Васильева ГА и др. Результаты открытого рандомизированного сравнительного клинического исследования по оценке реактогенности, безопасности и иммуногенности вакцины Энцевир у детей в возрасте от 3-х до 17 лет. Эпидемиология и вакцинопрофилактика 2015; 14(2): 66–72. [Kharit SM, Ruleva AA, Fridman IV, Nacharova EP, Alekseeva LA, Vasil'eva GA, et al. The Results of an Open, Randomized Comparative Clinical Study to Assess the Reactogenicity, Safety and Immunogenicity of the Vaccine EntseVir in Children Aged 3 to 17 Years.

- Epidemiology&Vaccinal Prevention. 2015; 14(2): 66–72 (In Russ.)]
- 32. Анкудинова АВ, Романенко ВВ, Ворович МФ, Ковтун ОП, Есюнина МС, Киктенко АВ и др. Результаты клинического исследования по оценке безопасности и иммуногенности вакцины «Клещ-Э-Вак» в объеме 0,25 мл (детская доза). Вестник Уральской медицинской академической науки 2014; 5(51): 64–9. [Ankudinova AV, Romanenko VV, Vorovich MF, Kovtun OP, Esyunina MS, Kiktenko AV, et al. Results of a Clinical Immunogenicity and Safety Trial of Tick-E-Vac 0.25 ml Vaccine (Pediatric Dosage). The Vestnik Uralskoi Meditsinskoi Akademicheskoi Nauki 2014; 5(51): 64–9 (In Russ.)]
- 33. Leonova GN, Ternovoi VA, Pavlenko EV, Maistrovskaya OS, Protopopova EV, Loktev VB. Evaluation of Vaccine Encepur Adult for Induction of Human Neutralizing Antibodies against Recent Far Eastern Subtype Strains of Tick-Borne Encephalitis Virus. Vaccine. 2007; 25(5): 895–901.
- 34. Афонина ОС, Бархалева ОА, Саркисян КА, Воробьева МС, Мовсесянц АА, Олефир ЮВ и др. Изучение протективных свойств вакцин против вирулентных штаммов вируса клещевого энцефалита трех генотипов: европейского, дальневосточного и сибирского (экспериментальное исследование). Эпидемиология и вакцинопрофилактика 2017; 1(92): 62–7. [Afonina OS, Barkhaleva OA, Sarkisyan KA, Vorobieva MS, Movsesyants AA., Olefir YuV. The Study of Protective Properties of Vaccines against Virulent Strains of the Virus Tick-Borne Encephalitis Three Genotypes: European, Far Eastern and Siberian (Experimental Research). Epidemiology&Vaccinal Prevention. 2017; 1(92): 62–7 (In Russ.)]

Об авторах

Федеральное государственное бюджетное учреждение «Научный центр экспертизы средств медицинского применения» Министерства здравоохранения Российской Федерации, Российская Федерация, 127051, Москва, Петровский бульвар, д. 8, стр. 2

Козлова Татьяна Юрьевна. Эксперт 1-й категории управления экспертизы противовирусных МИБП Центра экспертизы и контроля МИБП

Хантимирова Лейсан Маратовна. Аналитик управления экспертизы противовирусных МИБП Центра экспертизы и контроля МИБП

Рукавишников Андрей Владимирович. Заместитель начальника управления экспертизы противовирусных МИБП Центра экспертизы и контроля МИБП, канд. биол. наук

Шевцов Владимир Александрович. Начальник управления экспертизы противовирусных МИБП Центра экспертизы и контроля МИБП, канд. мед. наук

Поступила 09.10.2017 Принята к публикации 08.02.2018

- 35. Leonova GN, Pavlenko EV. Characterization of Neutralizing Antibodies to Far Eastern of Tick–Borne Encephalitis Virus Subtype and the Antibody Avidity for Four Tick–Borne Encephalitis Vaccines in Human. Vaccine. 2009; 27(21): 2899–904.
- 36. Афонина ОС, Терехина ЛЛ, Бархалева ОА, Ладыженская ИП, Саркисян КА, Воробьева МС и др. Экспериментальное изучение перекрестного иммунного ответа на антигены штаммов вируса клещевого энцефалита разных генотипов у мышей ВАLВ/с, иммунизированных различными вариантами вакцины клещевого энцефалита. Эпидемиология и вакцинопрофилактика 2014; 5(78): 88–96. [Afonina OS, Terekhina LL, Barkhaleva OA, Ladyzhenskaya IP, Sarkisyan KA, Vorobieva MS, et al. Experimental Studies Cross Immune Response to Antigens of the Virus Strains of Tick-Borne Encephalitis Different Genotypes in Balb/C Mice, Immunized with Various Embodiments of Tick-Borne Encephalitis Vaccine. Epidemiology&Vaccinal Prevention. 2014; 5(78): 88–96 (In Russ.)]
- 37. Orlinger KK, Hofmeister Y, Fritz R, Holzer GW, Falkner FG, Unger B, et al. A Tick-Borne Encephalitis Vaccine Based on the European Prototype Strain Induced Broadly Active Cross-Neutralization Antibodies in Humans. Journal of Infectious diseases 2011; 203: 1556–64.
- 38. Павленко ЕВ, Леонова ГН, Майстровская ОС. Сравнительное изучение иммуногенности вакцин против клещевого энцефалита. Дальневосточный журнал инфекционной патологии 2007; 11: 56–62. [Pavlenko EV, Leonova GN, Majstrovskaja OS. Comparative Study of the Immunogenicity of Vaccines against Tick-Borne Encephalitis. Dal'nevostochnyj Zhurnal Infekcionnoj Patologii 2007; 11: 56–62 (In Russ.)]

Authors

Federal State Budgetary Institution «Scientific Centre for Expert Evaluation of Medicinal Products» of the Ministry of Health of the Russian Federation, 8/2 Petrovsky boulevard, Moscow 127051, Russian Federation

Tatyana Yu. Kozlova. 1st Professional Category Expert of the Division for Evaluation of Antiviral Medicinal Immunobiological Products of the Centre for Evaluation and Control of Medicinal Immunobiological Products

Leysan M. Khantimirova. Analyst of the Division for Evaluation of Antiviral Medicinal Immunobiological Products of the Centre for Evaluation and Control of Medicinal Immunobiological Products

Andrei V. Rukavishnikov. Deputy Head of the Division for Evaluation of Antiviral Medicinal Immunobiological Products of the Centre for Evaluation and Control of Medicinal Immunobiological Products. Candidate of Biological Sciences

Vladimir A. Shevtsov. Head of the Division for Evaluation of Antiviral Medicinal Immunobiological Products of the Centre for Evaluation and Control of Medicinal Immunobiological Products. Candidate of Medicinal Sciences

Received 9 October 2017 Accepted 8 February 2018 УДК 615.371:616.932:615.038:615.065 DOI: 10.30895/2221-996X-2018-18-1-42-49 ШИФР 03.02.03 14.01.09 СПЕЦИАЛЬНОСТЬ Микробиология Инфекционные болезни

Эффективность и безопасность вакцин для профилактики холеры

* А. А. Горяев, Л. В. Саяпина, Ю. И. Обухов, В. П. Бондарев

Федеральное государственное бюджетное учреждение «Научный центр экспертизы средств медицинского применения» Министерства здравоохранения Российской Федерации, Российская Федерация, 127051, Москва, Петровский бульвар, д. 8, стр. 2

Холера — острое диарейное заболевание, вызываемое токсигенными штаммами Vibrio cholerae O1 и O139 серогрупп, по-прежнему остается одной из основных проблем мирового здравоохранения. Несмотря на существующие методы лечения и улучшение качества питьевой воды, санитарии и гигиены, ежегодно от холеры, по оценкам ВОЗ, умирают около 100000 человек. В последние годы одним из эффективных способов предупреждения и ликвидации эпидемий холеры является применение оральных холерных вакцин. Согласно Глобальной дорожной карте ВОЗ, массовая вакцинация должна помочь к 2030 г. добиться снижения смертности от холеры на 90 % в мире и элиминирования заболевания в 20 странах. В обзоре изложены основные исторические этапы создания холерных вакцин: парентеральных, химических, инактивированных и живых оральных вакцин. Представлено сравнительное описание состава действующих и вспомогательных веществ вакцин Dukoral®, mORC-VAX®, Shanchol®, Euvichol®, Vaxchora®, Oravacs® и вакцины холерной бивалентной химической. Проанализированы результаты международных многоцентровых клинических исследований оральных инактивированных, живой и химической холерных вакцин. Рассмотрены вопросы, касающиеся изучения эффективности и безопасности вакцин, используемых для профилактики холеры.

Ключевые слова: холера; вакцины; холерные вакцины; живые вакцины; инактивированные вакцины; профилактика холеры; Vibrio cholerae

Для цитирования: Горяев АА, Саяпина ЛВ, Обухов ЮИ, Бондарев ВП. Эффективность и безопасность вакцин для профилактики холеры. БИОпрепараты. Профилактика, диагностика, лечение 2018; 18(1): 42–49. DOI: 10.30895/2221-996X-2018-18-1-42-49

* Контактное лицо: Горяев Артем Анатольевич; Goryaev@expmed.ru

Efficacy and Safety of Cholera Vaccines

* A. A. Goryaev, L. V. Sayapina, Yu. I. Obukhov, V. P. Bondarev

Federal State Budgetary Institution «Scientific Centre for Expert Evaluation of Medicinal Products» of the Ministry of Health of the Russian Federation, 8/2 Petrovsky boulevard, Moscow 127051, Russian Federation

Cholera is an acute diarrheal disease caused by toxigenic strains of *Vibrio cholerae* O1 and O139 serogroups. It still remains a major global healthcare problem. According to WHO, about 100,000 people die from cholera every year, despite the modern methods of treatment, improvement in the quality of drinking water, sanitation and hygiene. In recent years, oral cholera vaccines have proved an effective tool for preventing and curbing cholera epidemics. According to the WHO Ending Cholera — A Global Roadmap, mass vaccination should help reduce the mortality resulting from cholera by 90 % worldwide by 2030 and eliminate the disease in 20 countries. The review outlines the main historical stages in the development of cholera vaccines: parenteral, chemical, inactivated and live oral vaccines. The paper compares active ingredients and excipients used in Dukoral®, mORC-VAX®, Shanchol®, Euvichol®, Vaxchora®, Oravacs® and the cholera bivalent chemical vaccine. The results of international multicenter clinical trials of oral inactivated, live and chemical cholera vaccines are analysed. Issues related to efficacy and safety studies of cholera vaccines are considered.

Key words: cholera; vaccines; cholera vaccines; live vaccines; inactivated vaccines; cholera prevention; Vibrio cholerae

For citation: Goryaev AA, Sayapina LV, Obukhov Yul, Bondarev VP. Efficacy and Safety of Cholera Vaccines. BIOpreparations. Prevention, Diagnosis, Treatment 2018; 18(1): 42–49. DOI: 10.30895/2221-996X-2018-18-1-42-49

* Contact person: Goryaev Artem Anatolievich; Goryaev@expmed.ru

На сегодняшний день холера остается одной из основных проблем здравоохранения мирового значения, актуальной в основном для стран, в которых отсутствуют доступ к чистой питьевой воде и надлежащие средства санитарии и гигиены, либо в странах со сложной военно-политической обстановкой, либо пострадавших от чрезвычайных ситуаций. По некоторым оценкам, в мире ежегодно регистрируются от 1,3 до 4,0 млн случаев заболеваний холерой, при этом погибают от 21 000 до 143 000 человек [1, 2].

Возбудителем холеры являются токсигенные штаммы Vibrio cholerae O1 и O139 серогрупп. Серогруппа O1 по ряду фенотипических и генетических признаков подразделяется на два биовара — классический и Эль-Тор. Также О1 серогруппа по структуре липополисахарида (ЛПС) классифицируется на три серотипа: Инаба, Огава и Гикошима [3-5]. Известно, что первые шесть пандемий холеры (1816-1926 гг.) были вызваны V. cholerae 01 классического биовара, в то время как возбудителем седьмой пандемии (с 1961 г. по настоящее время) является V. cholerae O1 Эль-Тор. С 1992 г. вибрионы новой 0139 серогруппы вызывали крупные вспышки холеры в странах Юго-Восточной Азии. В последние годы эпидемии холеры были вызваны «измененными» вариантами V. cholerae Эль-Тор, имеющими характерные фенотипические свойства Эль-Тор биовара, но продуцирующими холерный токсин (XT) классического биовара [3-5].

Цель работы — изложение основных исторических этапов создания холерных вакцин, а также оценка эффективности и безопасности современных вакцин, применяемых для профилактики холеры.

Еще в конце XIX века Р. Кох и его коллеги отмечали, что переболевшие холерой люди были зашищены от инфекции во время той же эпидемии [6]. Первая холерная вакцина была разработана Х. Ферраном в 1884 г. и состояла из разведений бульонной культуры, полученной путем высева испражнений больных людей [7, 8]. Однако массовое применение живой парентеральной вакцины Х. Феррана во время вспышки холеры в Испании не подтвердило ее эффективность, при этом она была реактогенной [6-8]. Несмотря на неудачную кампанию в Испании, работы по созданию вакцины против холеры продолжились. В 1892 г. В.А. Хавкин предложил способ вакцинации, состоящий из двух последовательных подкожных введений живых вакцин с интервалом в 6 сут. Первая вакцина содержала холерные вибрионы, ослабленные длительным культивированием при температуре 39 °C, вторая — вибрионы, вирулентность которых была повышена пассированием на морских свинках [8, 9]. Исследования, проводившиеся в 1893-1896 гг. в Индии, показали, что из 5778 привитых вакциной В.А. Хавкина заболели холерой 27 человек, при этом среди 6549 невакцинированных — 198 человек [8]. В 1902 г. в Японии была применена разработанная В. Колле парентеральная вакцина, состоящая из инактивированных нагреванием клеток V. cholerae, эффективность которой составила более 80 % [7]. Несмотря на то что большинство разрабатываемых в то время вакцин использовали парентерально, в 1893 г. Д.К. Заболотный и И.Г. Савченко на себе доказали возможность пероральной вакцинации [6]. Позднее, в 1920-1930 гг., в Индии и Китае проводились полевые исследования «биливакцины», состоящей из таблетки с желчью и таблетки, содержащей более 70-109 инактивированных вибрионов. Было показано, что вакцина обладала одинаковой эффективностью с парентеральной инактивированной цельноклеточной вакциной (82 и 80 % соответственно). При этом «биливакцина» вызывала частые нежелательные реакции (тошнота, рвота и диарея), что, по-видимому, послужило основанием для прекращения дальнейших исследований [10].

В последующие годы в мире для профилактики холеры использовались различные парентеральные вакцины, включая инактивированные цельноклеточные, очищенные липополисахаридные, инактивированные цельноклеточные с различными адъювантами и липополисахарид-холероген конъюгированные вакцины. В СССР были разрешены к применению холерная вакцина, состоящая из взвеси убитых микробных клеток холерного вибриона, и холероген-анатоксин, представлявший собой очищенный и концентрированный центрифугат бульонной культуры токсигенного штамма V. cholerae 569B [8]. Парентеральные холерные вакцины были малоэффективными (менее 50 %), обеспечивали непродолжительную защиту (3-6 мес.) и имели высокий риск возникновения нежелательных реакций: внутримышечное или подкожное введение препарата приводило к локальной боли, эритеме, уплотнению мягких тканей, лихорадке, недомоганию и головной боли у большинства вакцинированных людей. В связи с этим ВОЗ не рекомендует применение парентеральных холерных вакцин [11].

Последующие многочисленные исследования показали, что иммунитет человека против холеры в основном обусловлен антибактериальными и антитоксическими интерстициальными антителами (slgA) к ЛПС и ХТ. При этом установлено, что сывороточные вибриоцидные антитела, обнаруживаемые в сыворотке крови людей, перенесших холеру, или вакцинированных лиц, несмотря на корреляцию между повышением уровня их титра и снижением риска инфицирования, невозможно рассматривать как непосредственную защиту от холеры [4, 12, 13]. Таким образом, понимание механизма формирования местного иммунитета кишечника против вибрионов *V. cholerae* предопределило создание оральных холерных вакцин, показавших свою безопасность и более высокую эффективность по сравнению с парентеральными холерными вакцинами.

В настоящее время в мире лицензированы шесть оральных холерных вакцин (Dukoral®, mORC-VAX®, Shanchol®, Euvichol®, Vaxchora®, Oravacs®), в Российской Федерации зарегистрирована вакцина холерная бивалентная химическая (таблетки, покрытые кишечнорастворимой оболочкой, производства ФКУЗ РосНИПЧИ «Микроб» Роспотребнадзора. Россия).

Вакцина Dukoral®

Dukoral® («Valneva Sweden AB», Швеция) представляет собой четырехвалентную оральную инактивированную вакцину, состоящую из инактивированных нагреванием или формалином вибрионов *V. cholerae* О1 и рекомбинантной В-субъединицы ХТ (табл. 1). Вакцина выпускается в комплекте с бикарбонатным буфером, необходимым для нейтрализации соляной кислоты в желудке. Стандартный курс вакцинации взрослых и детей в возрасте от 6 лет состоит из приема двух доз с интервалом 1–6 недель, детей в возрасте от 2 до 6 лет — 3 доз с интервалом 1–6 недель [14]. Вакцина Dukoral® была разрешена к применению в Швеции в 1991 г., в последующие годы она была зарегистрирована более чем в 60 странах.

Эффективность вакцины Dukoral® была изучена в трех рандомизированных двойных плацебо-контролируемых клинических исследованиях (КИ) в Бангладеш и в Перу. Исследование было проведено в Бангладеш в 1985—1988 гг. на 90 000 добровольцах в возрасте от 2 до 65 лет, разделенных на три равные группы. Первая группа получала вакцину, содержащую инактивированные клетки V. cholerae и В-субъединицу XT; вторая группа — вакцину, содержащую только инактивированные клетки V. cholerae; третья группа — плацебо (E. coli K12).

Таблица 1. Холерные вакцины

Наи- мено- вание	Вакцина холер- ная бивалентная химическая	Dukoral®	mORC-Vax® / Shanchol® / Euvichol®	Vaxchora®	OraVacs®
Про- изво- ди- тель	ФКУЗ Россий- ский научно-ис- следовательский противочумный институт «Ми- кроб» Роспотреб- надзора, Россия	Valneva Sweden AB, Швеция	Vabiotech, Вьетнам / Shantha Biotechnics, Индия / EuBiologics Co., Ltd., Р. Корея	Pax Vax Bermuda Ltd., США	Shanghai United Cell Biotechnology, Китай
Фор- ма вы- пуска	Таблетки, по- крытые кишеч- норастворимой оболочкой	Суспензия в комплекте с гранулами шипучими для приготовления раствора для приема внутрь	Суспензия	Суспензия в комплекте с буфером для приготовления раствора для приема внутрь	Капсулы
Со-став	1 таблетка содержит: Действующее вещество: смесь холерогена-анатоксина V. cholerae О1 классического биовара— 100 000 ± 20 000 единиц связывания холерогена-анатоксина, О-антиген V. cholerae О1— не менее 2000 услед. Вспомогательные вещества: сахароза, крахмал, тальк, кальция стеарат, целлацефат (ацетилфталилцеллюлоза)	Одна доза (3 мл) содержит: Действующие вещества: V. cholerae Phil 6973 серогруппы О1 биовара Эль-Тор серовара Инаба, инактивированные формалином, — 31,25-10° КОЕ; V. cholerae Cairo 48 серогруппы О1 классического биовара серовара Инаба, инактивированные нагреванием, — 31,25-10° КОЕ; V. cholerae Cairo 50 серогруппы О1 классического биовара серовара Огава, инактивированные нагреванием, — 31,25-10° КОЕ; V. cholerae Cairo 50 серогруппы О1 классического биовара серовара Огава, инактивированные формалием, — 31,25-10° КОЕ; Рекомбинантная В-субъединица холерного анатоксина — 1 мг. Вспомогательные вещества: натрия хлорид, натрия дигидрофосфата моногидрат, натрия гидрофосфата дигидрат, вода Гранулы шипучие (5,6 мг): натрия гидрокарбонат, лимонная кислота, ароматизатор малиновый, натрия карбонат, натрия сахаринат, натрия цитрат	Одна доза (1,5 мл) содержит: Действующие вещества: V. cholerae Phil 6973 серогруппы О1 биовара Эль-Тор серовара Инаба, инактивированные формалином, — 600 ELISA единиц; V. cholerae Cairo 48 серогруппы О1 классического биовара серовара Огава, инактивированные теплом, — 300 ELISA единиц; V. cholerae Cairo 50 серогруппы О1 классического биовара серовара Огава, инактивированные формалином, — 300 ELISA единиц; V. cholerae Cairo 50 серогруппы О1 классического биовара серовара Огава, инактивированные теплом, — 300 ELISA единиц; V. cholerae 4260 O139 серогруппы, инактивированные теплом, — 300 ELISA единиц, V. cholerae 4260 O139 серогруппы, инактивированные формалином, — 600 ELISA единиц. Вспомогательные вещества: фосфорнокислый натрий дигидрат, хлористый натрий, тиомерсал, вода	Одна доза содержит: Действующее вещество: V. cholerae CVD 103-HgR — от 4·10 ⁸ до 2·10 ⁹ КОЕ Вспомогательные вещества: сахароза, хлорид натрия, гидролизат казеина, аскорбиновая кислота, лактоза Буфер для приготовления суспензии: натрия бикарбонат, натрия карбонат, аскорбиновая кислота, лактоза	Действующее вещество: Рекомбинантная В-субъединица холерного токсина — 1 мг; Инактивированные клетки V. cholerae O1 — 5,0·10 ¹⁰ KOE
Спо- соб при- мене- ния и дозы	Взрослым: 3 таблетки, детям 11–17 лет: 2 таблетки, детям 2–10 лет: 1 таблетка. Ревакцинация: взрослым и детям 11–17 лет: 2 таблетки через 6–7 месяцев; детям 2–10 лет: 1 таблетка	Детям в возрасте от 6 лет и взрослым: 2 дозы с интервалом 1–6 недель, детям от 2 до 6 лет: 3 дозы с интервалом 1–6 недель Ревакцинация: взрослым и детям в возрасте от 6 лет: через 2 года, детям от 2 до 6 лет: через 3 месяца	Взрослым и детям от 1 года: 2 дозы с интер- валом 14 сут	Взрослым от 18 до 64 лет: одна доза	Взрослым и детям от 11 лет: по 3 капсулы с интервалом 0–7–28 сут
Эф- фек- тив- ность	Противохолер- ный иммунитет длительностью до 6 месяцев	85 % в течение первых 6 месяцев, 57 % через 2 года; У взрослых и детей старше 6 лет длительность защиты до 5 лет; У детей от 2 до 6 лет — около 6 месяцев 67 % против ETEC* в течение не менее 3 месяцев	67 % через 2 года после вакцинации у детей и взрослых	90,3 % через 10 сут, 79,5 % через 3 месяца	69,88 % через 3 месяца и 54,99 % через 6 месяцев

Продолжение табл. 1

Наи- мено- вание	Вакцина холер- ная бивалентная химическая	Dukoral®	mORC-Vax® / Shanchol® / Euvichol®	Vaxchora®	OraVacs®
Усло- вия хране- ния	От 2 до 8 °C	От 2 до 8°С, не замораживать. Стабильна в течение 1 месяца при хранении при температуре 37°С	От 2 до 8°C, не замораживать	При темпера- туре от минус 25 до минус 15°C	От 2 до 8 °C, не заморажи- вать
Срок годно- сти	3 года	3 года	2 года	18 месяцев	2 года
Пре- ква- лифи- кация ВОЗ	_	2001 г.	Shanchol [®] — 2011 г., Euvichol [®] — 2016 г.	_	_

^{*} ETEC — Enterotoxigenic (энтеротоксигенная) Escherichia coli.

Таблица 2. Данные клинического исследования эффективности вакцины Ducoral® в Бангладеш [15]

Время, прошед- шее с момента	Показатель эффективности		ети от 2 до 6 лет	Взрослые и дети старше 6 лет		
вакцинации	вакцины	Ducoral®	плацебо	Ducoral®	плацебо	
6 месяцев	Количество случаев заражения холерой	0	9	4	17	
	Эффективность, % (95 % ДИ)	1	00	76 (30, 92)		
1 год	Количество случаев заражения холерой	27	49	20	82	
ТТОД	Эффективность, % (95 % ДИ)	44 (10, 65)		76 (60, 85)		
0	Количество случаев заражения холерой	17	26	23	58	
2 года	Эффективность, % (95 % ДИ)	33 (33, 64)		33 (33, 64) 60 (60, 85)		60, 85)

Примечание. ДИ — доверительный интервал.

Эффективность вакцины, оцениваемая путем сравнения показателей заболеваемости холерой в 1-й группе и плацебогруппе, составляла 85 % (95 % ДИ: 56-95) в течение первых 6 мес. При этом было установлено, что продолжительность иммунитета зависела от возраста вакцинированных (табл. 2). У детей в возрасте от 2 до 6 лет в течение первого года после вакцинации эффективность снижалась более чем в два раза до 44 % (95 % ДИ: 10-65). Наряду с этим у взрослых и детей старше 6 лет, даже через два года после вакцинации, эффективность была значительно выше и составляла 60 % (95 % ДИ: 60-85) [14, 15]. Результаты второго исследования, проводимого в Перу в 1994 г. на 1563 военнослужащих, также показали высокую краткосрочную эффективность двухдозовой вакцинации (интервал между приемами доз 7-11 сут), равную 85 % (95 % ДИ: 36-97) [16]. При последующей вакцинации жителей сельской местности Перу (1993-1995 гг.) в возрасте от 2 до 65 лет разница в уровне заболеваемости в опытных и контрольной группах в течение первого года была статистически недостоверной. Вместе с тем проведение бустерной вакцинации через 10-12 мес. после первичной иммунизации повышало эффективность Dukoral® до 60,5 % (95 % ДИ: 28-79) [17].

При ретроспективном анализе данных КИ, проводимых в Бангладеш, было показано, что заболеваемость холерой среди лиц, получивших плацебо, была обратнозависима от уровня охвата вакцинацией: при охвате прививками менее 28 % населения количество случаев заболеваний холерой составляло 7,01/1000, а при охвате более 51 % населения — 1,47/1000 [18]. Таким образом, массовая иммунизация вакциной Dukoral®, помимо доказанной прямой защиты людей, обеспечивала также и формирование коллективного иммунитета [18].

Безопасность вакцины Dukoral® была подтверждена при проведении мониторинга эффективности вакцины более чем на 240 000 привитых, при этом частота неблагоприятных реакций была незначительной и составляла менее 0,2 %. Наиболее частыми отмечаемыми нежелательными реакциями были тошнота и рвота, боли в животе, которые в основном связаны с использованием входящего в комплект вакцины бикарбонатного буфера. Проведенные пострегистрационные клинические исследования также подтвердили безопасность и эффективность вакцины [15, 19], а опыт применения Dukoral® в Бейре (Мозамбик), 20 % населения которого инфицировано ВИЧ, доказал ее эффективность и безопасность у ВИЧ-инфицированных лиц [20].

Вакцины mORC-VAX®/Shanchol®/Euvichol®

Бивалентные инактивированные цельноклеточные вакцины mORC-VAX®, Shanchol®, Euvichol® создавались на основе технологии производства вакцины Dukoral®, но без использования рекомбинантной В-субъединицы XT (табл. 1).

Применение разработанной в Национальном институте гигиены и эпидемиологии (Вьетнам) вакцины ORC-Vax в КИ, проведенных в г. Хюэ в 1992-1993 гг., показало 66 % эффективность у взрослых и детей в возрасте от одного года [6, 21]. В связи с появлением холерных вибрионов новой 0139 серогруппы в 1992 г. в состав ORC-Vax дополнительно были введены инактивированные нагреванием клетки штамма V. cholerae 4260B 0139 серогруппы. Усовершенствованная вакцина ORC-Vax (Vabiotech, Вьетнам), также обеспечивающая 50 % защиту привитых людей через 3-5 лет после вакцинации, в 1997 г. была разрешена к применению во Вьетнаме и включена в национальную программу вакцинации [22]. В 2004 г. штамм V. cholerae 569B 01 Инаба был заменен на два штамма V. cholerae Cairo 48 O1 Инаба и V. cholerae Cairo 50 O1 Огава классических биоваров, при этом количество ЛПС в вакцине было увеличено в два раза. Вакцина с измененным составом была зарегистрирована во Вьетнаме под наименованием mORC-Vax® [6].

С целью глобального распространения технология производства вакцины была передана компании Shantha Biotechnics (Индия), которая в 2009 г. зарегистрировала ее в Индии под наименованием Shanchol®, и компании EuBiologics Co., Ltd. (Корея), которая зарегистрировала ее в Корее под наименованием Euvichol®.

Проведенные КИ вакцины Shanchol® подтвердили ее безопасность, хорошую переносимость и эффективность. В двойном слепом кластерно-рандомизированном плацебо-контролируемом исследовании, проведенном в Калькутте (Индия) и включавшем 66 900 человек в возрасте от одного года и старше, за три года наблюдения в группе получивших вакцину было зарегистрировано 38 случаев заболеваний холерой против 128 случаев в группе получивших плацебо (протективная эффективность — 66 %). Следует отметить, что значительная протективная защита наблюдалась у детей в возрасте от 1 года до четырех лет в течение 2 лет наблюдения, а в старших воз-

растных группах — в течение 3 лет [23]. Данные, полученные после 5 лет наблюдений, показали сохранение кумулятивной протективной эффективности вакцины Shanchol® на уровне 65 % (95 % ДИ: 52–74) [24]. Позднее в г. Дакка (Бангладеш) было проведено двойное слепое плацебо-контролируемое исследование, которое также показало безопасность и эффективность вакцины Shanchol® [25].

В 2014 г. на Филиппинах для подтверждения одинаковых профилей безопасности и эффективности вакцин Euvichol® и Shanchol® были проведены сравнительные КИ на 1263 здоровых добровольцах (777 взрослых в возрасте от 18 до 40 лет и 486 детей в возрасте от 1 до 17 лет). В ходе исследования не было выявлено случаев серьезных побочных действий, у 44 взрослых (5,7 %) и 29 детей (6,0 %) в течение первых шести суток после приема вакцины были отмечены головные боли, лихорадка и диарея, которые проходили в течение одних или нескольких суток. Показатели оценки иммунного ответа вакцины Euvichol® не отличались от соответствующих показателей вакцины Shanchol® (табл. 3) [26].

Вакцина Vaxchora®

Живая оральная вакцина Vaxchora® производства Pax Vax Bermuda Ltd. (США) была одобрена для применения в США в 2016 г. Ранее вакцина была зарегистрирована в шести странах под наименованиями Orochol, Orochol E и Mutacol, выпуск препаратов был прекращен в 2004 г. Вакцина предназначена для вакцинации взрослых туристов в возрасте от 18 до 64 лет, планирующих посещение территории с высоким риском заражения холерой [27].

Одна доза вакцины Vaxchora® содержит от $4\cdot10^8$ до $2\cdot10^9$ живых клеток V. cholerae O1 CVD 103-HgR. Штамм CVD 103-HgR был получен из штамма V. cholerae 569B путем 94 % делеции гена ctxA, ответственного за синтез A-субъединицы XT, и сохранением способности к продукции B-субъединицы XT. Кроме этого, в ген hlyA гемолизина был внедрен маркер устойчивости к ртути (mer) для дифференциации штамма CVD 103-HgR от «диких» штаммов V. cholerae [28].

Эффективность вакцины была оценена в рандомизированном контролируемом двойном слепом исследовании, проведенном на 197 добровольцах в возрасте от 18 до 45 лет, не болевших холерой и не посещавших эндемичные по холере об-

Таблица 3. Данные сравнительного рандомизированного исследования эффективности вакцин Euvichol® и Shanchol® [26]

		О1 Инаба			О1 Огава		O139		
Взрослые	Euvichol® (<i>n</i> = 377)	Shanchol® (<i>n</i> = 376)	<i>P</i> -зна- чение	Euvichol® (<i>n</i> = 377)	Shanchol® (<i>n</i> = 376)	<i>P-</i> зна- чение	Euvichol® (<i>n</i> = 377)	Shanchol® (<i>n</i> = 376)	<i>P</i> -зна- чение
Серокон- версия на 14 сут, %	84,10	83,80	0,91	85,40	78,50	0,01	33,70	41,80	0,02
Серокон- версия на 28 сут, %	81,70	76,30	0,07	80,10	73,90	0,04	28,60	37,80	0,01
	О1 Инаба			О1 Огава			O139		
Дети	Euvichol® (<i>n</i> = 231)	Shanchol® $(n = 235)$	<i>P</i> -зна- чение	Euvichol® (<i>n</i> = 231)	Shanchol® (<i>n</i> = 235)	<i>P</i> -зна- чение	Euvichol® $(n = 231)$	Shanchol® $(n = 235)$	<i>Р</i> -зна- чение
Серокон- версия на 14 сут, %	85,70	84,30	0,60	86,60	83,80	0,40	64,10	67,20	0,47
Серокон- версия на 28 сут, %	87,40	88,90	0,62	90,50	88,10	0,04	56,70	62,10	0,23

ласти за последние 5 лет. Через 10 сут и 3 мес. после вакцинации исследуемых заражали штаммом V. cholerae N16961 в дозе 1.105 КОЕ. Было установлено, что эффективность препарата при заражении через 10 сут составила 90,3 % (95 % ДИ: 62,7-100,0) и 79,5 % (95 % ДИ: 49,9-100,0) — через 3 мес. (табл. 4) [29]. Помимо этого, дополнительно оценивалась способность вакцины Vaxchora® к образованию вибриоцидных антител к антигенам сероваров Огава и Инаба Эль-Тор, биовара и серовара Огава классического биовара, не входящих в состав вакцины. Полученные результаты показали, что процент сероконверсии к 4 основным биоварам и сероварам в течение 10 сут после вакцинации находился в диапазоне от 71,4 до 91,0 %. Наибольшие титры антител были обнаружены к серовару Инаба, а наименьшие — к серовару Огава, при этом принадлежность к биоварам (классический и Эль-Тор) статистически не влияла на процент сероконверсии [27]. Нежелательными реакциями при применении вакцины были головная боль (43 %), дискомфорт в животе (37-41 %), недомогание (35-37 %), спазмы мышц живота (25-31 %), отсутствие аппетита (15-23 %) и тошнота/рвота (менее 4 %), которые обычно носили временный характер [27].

Вакцина OraVacs®

Вакцина OraVacs® производства Shanghai United Cell Biotechnology (Китай) лицензирована в Китае, на Филиппинах и по составу идентична вакцине Dukoral® (табл. 1). OraVacs® предназначена для иммунизации взрослых и детей старше 11 лет, курс вакцинации состоит из последовательного приема трех капсул по схеме 1–7–28 сут.

Для оценки безопасности и эффективности вакцины OraVacs® были проведены 4 КИ на 6815 взрослых и детях старше 11 лет. Показано, что менее чем в 7 % случаев наблюдались боли или дискомфорт в животе, крапивница, тошнота, диарея, головная боль после приема препарата. Эффективность вакцины, оцениваемая по уровню титров антител к ЛПС и ХТ в крови и стуле, в ходе III фазы КИ составила 69,88 % через 3 мес. и 54,99 % через 6 мес. Вакцина OraVacs®, так же как и Dukoral®, предохраняет против энтеротоксигенной кишечной палочки (ETEC) [30].

Вакцина холерная бивалентная химическая

В России зарегистрирована вакцина холерная бивалентная химическая производства ФКУЗ РосНИПЧИ «Микроб» Роспотребнадзора (Россия), в состав которой входит смесь холероген-анатоксина и О-антигена (табл. 1) [31]. Одна прививочная доза вакцины составляет для взрослых 3 таблетки, для детей

в возрасте от 11 до 17 лет — 2 таблетки, для детей от 2 до 10 лет — 1 таблетка. В связи с тем что вакцина вызывает развитие иммунитета против холеры длительностью до 6 мес., ревакцинацию необходимо проводить через 6–7 мес. после вакцинации. Вакцина холерная бивалентная химическая включена в Календарь профилактических прививок Российской Федерации по эпидемическим показаниям и предназначена для вакцинации лиц, выезжающих в неблагополучные по холере страны (регионы), или в случае осложнения санитарно-эпидемиологической обстановки [32].

Результаты проведенных исследований показали ареактогенность и безопасность вакцины холерной бивалентной химической [33]. У некоторых привитых через 1-2 ч после приема были отмечены случаи слабых неприятных ощущений в эпигастральной области, урчание в животе и кашицеобразный стул [33]. По данным КИ эффективность была оценена на 276 добровольцах в возрасте от 19 лет и старше, случайно распределенных в 6 равнозначных групп по 40-50 человек: 4 группы получали различные дозы вакцины, пятая группа — плацебо и шестая группа (группа сравнения) прививалась подкожно коммерческой парентеральной холерной вакциной. В группе привитых тремя таблетками через месяц уровень среднегеометрических обратных значений титра вибриоцидных антител в сыворотке крови к серовару Инаба был равен 112 (95 % ДИ: 90-136), к Огава — 112 (95 % ДИ: 92-132), к антитоксину -200 (95 % ДИ: 152-280), при этом количество серонегативных лиц составляло 8-14 % и у 80 % выявлялись копроантитела.

Таким образом, на сегодняшний день в мире существуют различные типы оральных холерных вакцин: инактивированные цельноклеточные, инактивированные цельноклеточные с рекомбинантной В-субъединицей ХТ, смесь холероген-анатоксина и О-антигена и живая, безопасность и эффективность которых была подтверждена многочисленными КИ.

Вакцины Dukoral®, Shanchol®, Euvichol® имеют статус преквалифицированных вакцин BO3. Данный статус подтверждает качество, безопасность и эффективность вакцины в соответствии с требованиями BO3, а также дает право на их приобретение фондами OOH [11, 34]. Данные холерные вакцины широко используются BO3 при проведении массовых вакцинаций в качестве дополнительной и немедленной мер в эндемичных регионах или во время эпидемий холеры. Так, за последние 20 лет было использовано более 5 млн доз оральных холерных вакцин. Учитывая то, что в последние годы ситуация, связанная с заболеваниями холерой, в мире продолжает оставаться напряженной, в 2013 г. BO3 создала резервный запас, состоящий из 2 млн доз холерных вакцин [35, 36]. Согласно Глобальной

Таблица 4. Данные исследования эффективности вакцины Vaxchora® в профилактике умеренной и тяжелой диареи при заражении добровольцев штаммом *V. cholerae* N16961 через 10 сут и 3 месяца после вакцинации [28, 29]

	Наименование группы					
Определяемый показатель	Vaxchora®, заражение через 10 сут после вакцинации N = 35 (n, %)	Vaxchora®, заражение через 3 меся- ца после вакцинации N = 35 (n, %)	плацебо, объединенные данные по заражению через 10 сут и 3 месяца N = 66 (n, %)			
Умеренная (3–5 л в сутки) или тяжелая (> 5 л в сутки) диарея в течение 10 суток после заражения	2 (5,7)	4 (12,1)	39 (59,1)			
Эффективность вакцины*, %	90,3 (95 % ДИ: 62,7–100)	79,5 (95 % ДИ: 49,9–100)	_			

^{*} Эффективность вакцины = [Процент заболевших в группе плацебо – Процент заболевших в вакцинированной группе / Процент заболевших в группе плацебо] · 100.

дорожной карте «Ликвидировать холеру: глобальная дорожная карта на период до 2030 г.» (Ending Cholera: A Global Roadmap to 2030), разработанной Глобальной целевой группой по борьбе с холерой (Global Task Force on Cholera Control (GTFCC)), к 2030 г. планируется добиться снижения смертности от холеры на 90 % и элиминировать заболевания в 20 странах [37]. Для достижения глобальной цели будут активно применяться холерные вакцины Shanchol® и Euvichol®. Так, в 2018 г. планируется использование резервного запаса в 25 млн доз.

Заключение

Несмотря на очевидные успехи в вакцинации против холеры, необходимо проведение дальнейших исследований по совершенствованию существующих и созданию новых холерных вакцин, в том числе созданию эффективных вакцин, предназначенных для детей младше 1 года, и однодозовых вакцин, применение которых будет способствовать большему охвату вакцинируемых и снижению расходов при массовых вакцинациях. Также с целью улучшения качества и доступности холерных вакцин необходимы исследования, направленные на создание «удобных» форм выпуска и повышение стабильности вакцин при хранении и транспортировании при высоких температурах, что особенно важно для стран с жарким климатом.

Информация об отсутствии конфликта интересов. Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

Литература / References

- Ali M, Nelson AR, Lopez AL, Sack DA. Updated Global Burden of Cholera in Endemic Countries. PLoS Negl Trop Dis. 2015; 9(6): e0003832.
- 2. World Health Organization. Cholera, 2015. Weekly Epidemiological Record 2016; 91: 433–40.
- 3. Harris JB, LaRocque RC, Qadri F, Ryan ET, Calderwood SB. Cholera. Lancet 2012; 379(9835): 2466–76.
- Clemens JD, Nair GB, Ahmed T, Qadri F, Holmgren J. Cholera. Lancet 2017; 390(10101): 1539–49.
- Смирнова НИ, Горяев АА, Кутырев ВВ. Эволюция генома возбудителя холеры в современный период. Молекулярная генетика, микробиология и вирусология 2010; 4: 11–9. [Smirnova NI, Goryaev AA, Kutyrev VV. The Evolution of the Vibrio Cholerae Genome during the Modern Period. Molecular Genetics, Microbiology and Virology 2010; 4: 11–9 (In Russ.)]
- Lopez AL, Gonzales ML, Aldaba JG, Nair GB. Killed Oral Cholera Vaccines: History, Development and Implementation Challenges. Ther Adv Vaccines 2014; 2(5): 123–36.
- 7. Artenstein AW, ed. Vaccines: A Biography. New York: Springer-Verlag New York; 2010.
- 8. Бургасов ПН. Холера Эль-Тор. 2-е изд. М.: Медицина; 1976. [Burgasov PN. Cholera El Tor. 2nd ed. Moscow: Medicine; 1976 (In Russ.)]
- 9. Bornside GH. Waldemar Haffkine's Cholera Vaccines and the Ferran-Haffkine Priority Dispute. J Hist Med Allied Sci. 1982; 37(4): 399–422.
- 10. Barua D, Greenough WB, ed. Cholera. New York: Plenum Medical Book Company, 1992.
- World Health Organization. Cholera Vaccines: WHO Position Paper — August 2017. Weekly Epidemiological Record 2017; 92: 477–500.
- Leung DT, Chowdhury F, Calderwood SB, Qadri F, Ryan ET. Immune Responses to Cholera in Children. Expert Rev Anti Infect Ther. 2012; 10(4): 435–44.
- 13. Charles RC, Ryan ET. Cholera in the 21st Century. Curr Opin Infect Dis. 2011; 24(5): 472–7.
- 14. Dukoral. Cholera Vaccine (Inactivated, Oral). EPAR Summary for the Public. (EMA/643644/2014). Available

- from: http://www.ema.europa.eu/docs/en_GB/document_ library/EPAR_-_Summary_for_the_public/human/000476/ WC500037569.pdf
- 15. Clemens JD, Sack DA, Harris JR, Van Loon F, Chakraborty J, Ahmed F, et al. Field Trial of Oral Cholera Vaccines in Bangladesh: Results from Three-Year Follow-Up. Lancet 1990: 335(8684): 270–3.
- Sanchez JL, Vasquez B, Begue RE, Meza R, Castellares G, Cabezas C, et al. Protective Efficacy of Oral Whole-Cell/ Recombinant-B-Subunit Cholera Vaccine in Peruvian Military Recruits. Lancet 1994; 344(8932): 1273–6.
- Begue RE, Castellares G, Ruiz R, Hayashi KE, Sanchez JL, Gotuzzo E, et al. Community-Based Assessment of Safety and Immunogenicity of the Whole Cell Plus Recombinant B Subunit (WC/rBS) Oral Cholera Vaccine in Peru. Vaccine 1995; 13(7): 691–4.
- Ali M, Emch M, von Seidlein L, Yunus M, Sack DA, Rao M, et al. Herd Immunity Conferred by Killed Oral Cholera Vaccines in Bangladesh: a Reanalysis. Lancet 2005; 366(9479): 44–9.
- Sinclair D, Abba K, Zaman K, Qadri F, Graves PM. Oral Vaccines for Preventing Cholera. Cochrane Database Syst Rev. 2011; (3): CD008603.
- Lucas ME, Deen JL, von Seidlein L, Wang XY, Ampuero J, Puri M, et al. Effectiveness of Mass Oral Cholera Vaccination in Beira, Mozambique. N Engl J Med. 2005; 352(8): 757–67.
- 21. Trach DD, Clemens JD, Ke NT, Thuy HT, Son ND, Canh DG, et al. Field Trial of a Locally Produced, Killed, Oral Cholera Vaccine in Vietnam. Lancet 1997; 349(9047): 231–5.
- 22. Thiem VD, Deen JL, von Seidlein L, Canh DG, Anh DD, Park JK, et al. Long-term Effectiveness against Cholera of Oral Killed Whole-Cell Vaccine Produced in Vietnam. Vaccine 2006; 24(20): 4297–303.
- 23. Sur D, Kanungo S, Sah B, Manna B, Ali M, Paisley AM, et al. Efficacy of a Low-Cost, Inactivated Whole-Cell Oral Cholera Vaccine: Results from 3 Years of Follow-Up of a Randomized, Controlled Trial. PLoS Negl Trop Dis. 2011; 5(10): e1289.
- 24. Bhattacharya SK, Sur D, Ali M, Kanungo S, You YA, Manna B, et al. 5 Year Efficacy of a Bivalent Killed Whole-Cell Oral Cholera Vaccine in Kolkata, India: a Cluster-Randomised, Double-Blind, Placebo-Controlled Trial. Lancet Infect Dis. 2013; 13(12): 1050–6.
- 25. Saha A, Chowdhury MI, Khanam F, Bhuiyan MS, Chowdhury F, Khan AI, et al. Safety and Immunogenicity Study of a Killed Bivalent (O1 and O139) Whole-Cell Oral Cholera Vaccine Shanchol, in Bangladeshi Adults and Children as Young as 1 Year of Age. Vaccine 2011; 29(46): 8285–92.
- 26. Baik YO, Choi SK, Olveda RM, Espos RA, Ligsay AD, Montellano MB, et al. A Randomized, Non-Inferiority Trial Comparing Two Bivalent Killed, Whole Cell, Oral Cholera Vaccines (Euvichol vs Shanchol) in the Philippines. Vaccine 2015; 33(46): 6360–5.
- 27. Levine MM, Kaper JB, Herrington D, Ketley J, Losonsky G, Tacket CO, et al. Safety, Immunogenicity, and Efficacy of Recombinant Live Oral Cholera Vaccines, CVD 103 and CVD 103-HgR. Lancet 1988; 2(8609): 467–70.
- 28. Chen WH, Cohen MB, Kirkpatrick BD, Brady RC, Galloway D, Gurwith M, et al. Single-Dose Live Oral Cholera Vaccine CVD 103-HgR Protects against Human Experimental Infection with Vibrio Cholerae O1 El Tor. Clin Infect Dis. 2016; 62(11): 1329–35.
- 29. VAXCHORA [Summary Basis for Regulatory Action]. 2016 Available from: https://www.fda.gov/biologicsbloodvaccines/ vaccines/approvedproducts/ucm505866.htm
- 30. OraVacs Complete Insert. Available from: http://english.unitedbiotech.com.cn/sucb/en/insert/en-ocv.pdf
- 31. Вакцина холерная бивалентная химическая. Государственный реестр лекарственных средств. [Cholera Bivalent Chemical Vaccine. State Register of Medicines (In Russ.)] Available from: http://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=1a0ff5a3-f10c-499d-

- 8562-0bb242c7ccfa&t=00ca1ca0-120d-4231-aea9-910967eb5098
- 32. Об утверждении национального календаря профилактических прививок и календаря профилактических прививок по эпидемическим показаниям: приказ Министерства здравоохранения РФ от 21 марта 2014 г. № 125н. [On Approval of National Preventive Vaccination Preventive Vaccination Calendar Epidemic Indications. The Order of Ministry of Health of Russia No. 125n Dated March 21, 2014 (In Russ.)] Available from: http://ivo.garant.ru/#/document/70647158/paragraph/1:1
- 33. Сумароков АА, Иванов НР, Джапаридзе МН, Резников ЮБ, Рысцова ЕА, Никитина ГП и др. Определение оптимальной прививочной дозы оральной холерной химической бивалентной вакцины в контролируемом опыте. Журнал микробиологии, эпидемиологии и иммунобиологии 2010; (12): 55–62. [Sumarokov AA, Ivanov NR, Dzhaparidze MN, Reznikov YuB, Rystcova EA, Nikitina GP,
- et al. Determination of the Optimal Vaccination Dose of the Oral Cholera Chemical Bivalent Vaccine in a Controlled Trial 2010; (12): 55–62 (In Russ.)]
- 34. Преквалификация лекарственных средств ВОЗ. Всемирная организация здравоохранения. Информационный бюллетень № 278. 2013. [Prequalification of Medicines by WHO. World Health Organization. Fact Sheet № 278. 2013 (In Russ.)] Available from: http://www.who.int/mediacentre/factsheets/fs278/ru
- 35. Reyburn R, Deen JL, Grais RF, Bhattacharya SK, Sur D, Lopez AL, et al. The Case for Reactive Mass Oral Cholera Vaccinations. PLoS Negl Trop Dis. 2011; 5(1): e952.
- Hsiao A, Desai SN, Mogasale V, Excler JL, Digilio L. Lessons Learnt from 12 Oral Cholera Vaccine Campaigns in Resource-Poor Settings. Bull World Health Organ. 2017; 95(4): 303–12.
- 37. Ending Cholera. A Global Roadmap to 2030. World Health Organization. Available from: http://www.who.int/cholera/publications/global-roadmap.pdf

Об авторах

Федеральное государственное бюджетное учреждение «Научный центр экспертизы средств медицинского применения» Министерства здравоохранения Российской Федерации. Российская Федерация, 127051, Москва, Петровский бульвар, д. 8, стр. 2

Горяев Артем Анатольевич. Заместитель начальника управления экспертизы противобактериальных МИБП Центра экспертизы и контроля МИБП, канд. биол. наук

Саяпина Лидия Васильевна. Главный эксперт управления экспертизы противобактериальных МИБП Центра экспертизы и контроля МИБП, д-р мед. наук

Обухов Юрий Иванович. Начальник управления экспертизы противобактериальных МИБП Центра экспертизы и контроля МИБП

Бондарев Владимир Петрович. Директор Центра экспертизы и контроля МИБП, д-р мед. наук, профессор

Поступила 12.07.2017 Принята к публикации 08.02.2018

Authors

Federal State Budgetary Institution «Scientific Centre for Expert Evaluation of Medicinal Products» of the Ministry of Health of the Russian Federation, 8/2 Petrovsky boulevard, Moscow 127051, Russian Federation

Artem A. Goryaev. Deputy Head of the Division for Expert Evaluation of Antibacterial Medicinal Immunobiological Products of the Centre for Evaluation and Control of Medicinal Immunobiological Products. Candidate of Biological Sciences

Lidia V. Sayapina. Chief Expert of the Division for Expert Evaluation of Antibacterial Medicinal Immunobiological Products of the Centre for Evaluation and Control of Medicinal Immunobiological Products. Doctor of Medical Sciences

Yuri I. Obukhov. Head of the Division for Expert Evaluation of Antibacterial Medicinal Immunobiological Products of the Centre for Evaluation and Control of Medicinal Immunobiological Products

Vladimir P. Bondarev. Director of the Centre for Evaluation and Control of Medicinal Immunobiological Products. Doctor of Medical Sciences, Professor

Received 12 July 2017 Accepted 8 February 2018 УДК 614.35:615.28 DOI: 10.30895/2221-996X-2018-18-1-50-56 ШИФР 03.02.03 СПЕЦИАЛЬНОСТЬ Микробиология

Национальная стратегия Российской Федерации по предупреждению распространения устойчивости патогенных микроорганизмов к антимикробным препаратам: трудности и перспективы сдерживания одной из глобальных биологических угроз XXI века

* Д. С. Давыдов

Федеральное государственное бюджетное учреждение «Научный центр экспертизы средств медицинского применения» Министерства здравоохранения Российской Федерации, Российская Федерация, 127051, Москва, Петровский бульвар, д. 8, стр. 2

Устойчивость микроорганизмов к лекарственным препаратам и дезинфекционным средствам снижает эффективность профилактики и лечения инфекционных болезней человека, приводит к увеличению тяжести и длительности течения этих заболеваний, а также повышению смертности среди населения, и относится к основным современным проблемам здравоохранения во всем мире. В целях обеспечения реализации Стратегии национальной безопасности Российской Федерации и Основ государственной политики в области обеспечения химической и биологической безопасности Российской Федерации на период до 2025 года и дальнейшую перспективу, с учетом положений Концепции долгосрочного социально-экономического развития Российской Федерации на период до 2030 года, в 2017 году Правительством Российской Федерации утверждена Стратегия предупреждения и преодоления устойчивости микроорганизмов и вредных организмов растений к лекарственным препаратам, химическим и биологическим средствам на период до 2030 года и дальнейшую перспективу (далее — Стратегия). Стратегия является документом федерального уровня, который определяет цель и задачи по сдерживанию биологической угрозы, связанной с распространением устойчивости микроорганизмов и вредных организмов растений к лекарственным препаратам, химическим и биологическим средствам. В статье рассмотрены основные направления решения определенных в данной области цели и задач, этапы и ожидаемые результаты проведения мероприятий, а также управление реализацией Стратегии.

Ключевые слова: антимикробная резистентность; национальная система биологической безопасности Российской Федерации; биологические угрозы; инфекции, связанные с оказанием медицинской помощи (ИСМП)

Для цитирования: Давыдов ДС. Национальная стратегия Российской Федерации по предупреждению распространения устойчивости патогенных микроорганизмов к антимикробным препаратам: трудности и перспективы сдерживания одной из глобальных биологических угроз XXI века. БИОпрепараты. Профилактика, диагностика, лечение 2018; 18(1): 50–56. DOI: 10.30895/2221-996X-2018-18-1-50-56

* Контактное лицо: Давыдов Дмитрий Сергеевич; Davydov@expmed.ru

The National Strategy of the Russian Federation for Preventing the Spread of Antimicrobial Resistance: Challenges and Prospects of Controlling One of the Global Biological Threats of the 21st Century

* D. S. Davydov

Federal State Budgetary Institution «Scientific Centre for Expert Evaluation of Medicinal Products» of the Ministry of Health of the Russian Federation, 8/2 Petrovsky boulevard, Moscow 127051, Russian Federation

Microorganism resistance to medicinal products and disinfectants reduces the efficacy of prevention and treatment of human infectious diseases, increases the severity and duration of such diseases as well as the mortality rates, and is therefore regarded as a major global health issue. With a view to implementing the Russian National Security Strategy and the Principles of the National Policy in the Sphere of Chemical and Biological Safety of the Russian Federation up to 2025 and beyond, and with due regard to the Concept of the Long-Term Social and Economic Development of the Russian Federation until 2030 — the Government of the Russian Federation issued a resolution (in 2017) that approved the Strategy for Prevention and Combating the Resistance of Microorganisms and Plant Pests to Medicinal Products, Chemical and Biological Agents up to 2030 and beyond (hereinafter — Strategy). The Strategy is a federal document that defines the aim and objectives of controlling the biological agents. The article analyses the aim and objectives of the Strategy, dwells upon specific features of the document,

summarises the main stages and expected results of measures outlined in the document, and describes some aspects of its implementation.

Key words: antimicrobial resistance (AMR); National System of the Biological Safety of the Russian Federation; biological threats; healthcare-associated infection (HAI)

For citation: Davydov DS. The National Strategy of the Russian Federation for Preventing the Spread of Antimicrobial Resistance: Challenges and Prospects of Controlling One of the Global Biological Threats of the 21st Century. BIOpreparations. Prevention, Diagnosis, Treatment 2018; 18(1): 50–56. DOI: 10.30895/2221-996X-2018-18-1-50-56

* Contact person: Davydov Dmitrii Sergeevich; Davydov@expmed.ru

Актуальность проблемы антимикробной резистентности

В последние годы на международном уровне специалистами различных областей практически единогласно признана точка зрения на то, что устойчивость возбудителей инфекционных заболеваний к лекарственным средствам (также используются термины «антимикробная резистентность», или АМР, «лекарственная устойчивость» и пр.), одна из самых сложных проблем здравоохранения в масштабах всего человечества. Нельзя не согласиться с мнением Всемирной организации здравоохранения, которая с 2011 г. признает устойчивость одной из наиболее сложных и масштабных глобальных биологических угроз, при этом значимость и интенсивность ее распространения неуклонно нарастает в последние десятилетия.

Доктор Маргарет Чэн, до июня 2017 г. на протяжении более чем 10 лет возглавлявшая Всемирную организацию здравоохранения, утверждает: «Некоторые специалисты считают, что мы возвращаемся в доантибиотическую эру. Нет, это не так. Медицина вступает в постантибиотическую эру, когда множество самых обычных инфекций оказываются смертельно опасными» [1].

Профессор Салли Дэвис, глава департамента здравоохранения правительства Великобритании, считает, что если не приступить к решению этой проблемы сейчас, то через 20 лет после самых простых операций пациенты будут умирать от обычных инфекций [2]. Как следствие, уровень рисков для здоровья и жизни пациентов станет критическим не только в трансплантологии, кардио- и онкохирургии, но и при проведении рутинных стоматологических операций или лечении респираторных заболеваний.

Неприемлемо высокий уровень биологических рисков, связанных с распространением устойчивости возбудителей инфекционных заболеваний к лекарственным средствам, требует безотлагательных действий на глобальном уровне, что подтверждается положениями Политической декларации заседания Генеральной Ассамблеи по проблеме устойчивости к противомикробным препаратам, принятой на 71-й сессии Генеральной Ассамблеи Организации Объединенных Наций [3], и Глобального плана действий по борьбе с устойчивостью к противомикробным препаратам, который был принят на 68-й сессии Всемирной ассамблеи здравоохранения [4]). На заседании по проблеме устойчивости на 71-й сессии Генеральной Ассамблеи ООН делегация Российской Федерации находилась в числе ключевых докладчиков.

Необходимо подчеркнуть, что еще в 2013 г. Президент Российской Федерации утвердил Основы государственной политики в области обеспечения химической и биологической безопасности Российской Федерации на период до 2025 года и дальнейшую перспективу [5]. В этом документе распространение устойчивости патогенных микроорганизмов отнесено к числу основных причин, обусловливающих негативное воздействие биологических факторов на территории Российской Федерации.

Особенности Стратегии Российской Федерации по сдерживанию и преодолению антимикробной резистентности

В начале 2017 г. на межведомственном совещании было принято решение о необходимости разработки Министерством здравоохранения Российской Федерации проекта Стратегии предупреждения и преодоления устойчивости микроорганизмов и вредных организмов растений к лекарственным препаратам, химическим и биологическим средствам на период до 2030 года и дальнейшую перспективу, что находится в полном соответствии с точкой зрения Всемирной организации здравоохранения. При этом важно отметить, что в 2017 г. Генеральную ассамблею ВОЗ возглавила министр здравоохранения Российской Федерации В.И. Скворцова, что подтверждает признание достижений России в развитии системы здравоохранения.

Распоряжением Правительства Российской Федерации 25 сентября 2017 г. была утверждена Стратегия предупреждения и преодоления устойчивости микроорганизмов и вредных организмов растений к лекарственным препаратам, химическим и биологическим средствам на период до 2030 года и дальнейшую перспективу (далее — Стратегия).

Важнейшей особенностью данной Стратегии, которая отличает ее от национальных планов действия, принятых в абсолютном большинстве других стран, является то, что в документе Российской Федерации предусматривается формирование комплексного подхода к организации межведомственного и междисциплинарного взаимодействий.

Стратегия будет реализована в рамках национальной системы химической и биологической безопасности Российской Федерации по различным направлениям. В проекте разрабатываемого в настоящее время Федерального закона «О биологической безопасности» предложено рассматривать укрепление и развитие национальной системы биологической безопасности как систему средств и мер для борьбы с биологическими угрозами. В Стратегии предусмотрены комплексные мероприятия, направленные на ограничение развития устойчивости всех патогенных биологических агентов (патогенов) в целом, то есть не только микроорганизмов — возбудителей инфекционных заболеваний человека, но и инфекционных заболеваний животных, а также вредных организмов растений.

Стратегия имеет системный комплексный характер, и в разработке и согласовании ее положений принимали участие не только специалисты в сфере охраны здоровья и обеспечения санитарно-эпидемиологического благополучия в целом. К участию в работе над проектом Стратегии были привлечены все федеральные органы исполнительной власти, обладающие соответствующими полномочиями и компетенциями, в том числе в области ветеринарии, карантина и защиты растений, в сферах обращения лекарственных средств, охраны окружающей среды, защиты прав потребителей и других соответствующих областях деятельности.

Цели и задачи Стратегии Российской Федерации по сдерживанию и преодолению антимикробной резистентности

Цель Стратегии — разработка мер по предупреждению и ограничению распространения антимикробной резистентности на территории Российской Федерации. Это подразумевает повышение эффективности профилактики и лечения инфекционных и паразитарных болезней человека, животных и растений, снижение тяжести и длительности течения этих заболеваний, снижение смертности среди населения, гибели животных и растений, связанных с распространением устойчивости микроорганизмов и вредных организмов растений.

В Стратегии поставлен ряд задач, в рамках решения которых определено свыше 40 направлений, по которым планируется проведение комплексных мероприятий.

Для решения поставленных задач необходимо, помимо прочего, развитие нормативно-правового регулирования отношений, возникающих в области предупреждения распространения антимикробной резистентности на территории Российской Федерации.

Информирование населения по вопросам применения противомикробных препаратов и проблемам антимикробной резистентности

Непрерывная работа по просвещению пациентов и населения в целом в конечном счете является обязательным условием эффективности практически любых мероприятий в рамках реализации Стратегии.

Всемирная организация здравоохранения периодически публикует поражающие своими масштабами данные о некорректном, безответственном «off-label» применении антимикробных препаратов пациентами. Результаты социологических опросов, проводящихся в Российской Федерации, не противоречат данным BO3. Например:

- среднее количество опрошенных, которые считают, что антибиотиками можно лечить вирусные инфекции, почти всегда превышает 50 %, то есть составляет большинство;
- от 80 до 90 % пациентов полагают, что любое заболевание верхних дыхательных путей имеет инфекционную природу;
- примерно те же 80–90 % полагают, что любое острое респираторное заболевание можно (или даже «необходимо») вылечить антибиотиками:
- почти 90 % пациентов полагает, что при исчезновении симптомов заболеваний является возможным немедленное прекращение приема антимикробных препаратов (*«зачем до-полнительно травиться?»*);
- свыше 90 % семей, члены которых не имеют высшего и даже среднего медицинского образования, систематически приобретают и хранят в домашних аптечках антибиотики «на всякий случай».

Другой совершенно неприемлемой, но, к сожалению, широко распространенной практикой является самолечение, применение антимикробных препаратов по совету третьих лиц, а также профилактическое применение антибиотиков, например в период ухудшения эпидемиологической обстановки по гриппу и ОРЗ.

Самый яркий, но далеко не единственный пример бесконтрольного интенсивного использования противомикробных препаратов — применение сульфаметоксазола, граммидина и пр.

Приведенные примеры указывают на необходимость информирования населения по таким вопросам:

 корректное применение противомикробных препаратов, в соответствии с требованиями инструкции по медицинскому применению;

- обязательность соблюдения требований врача;
- возможность адекватной замены антибиотиков лекарственными препаратами, не способствующими формированию устойчивости;
 - недопустимость самолечения;
- пропаганда иммунопрофилактики, здорового образа жизни и личной гигиены.

Главной целью информационных кампаний должно стать мотивирование осведомленного и ответственного поведения при использовании антимикробных средств.

Повышение уровня подготовки специалистов в соответствующих отраслях по вопросам, связанным с антимикробной резистентностью

Приоритетом по данному направлению является разработка, внедрение и совершенствование образовательных программ высшего профессионального образования и дополнительных профессиональных программ, программ непрерывного медицинского и фармацевтического образования по таким направлениям, как медицинская микробиология, эпидемиология, фармакоэкономика. Требуется формирование у медицинского и фармацевтического персонала опыта объяснения пациентам недопустимости применения антимикробных лекарственных препаратов без назначения специалистами и важности соблюдения назначенного лечения.

Учитывая межведомственный, междисциплинарный характер Стратегии, следует вести речь о необходимости внедрения программ профессиональной подготовки по вопросам антимикробной резистентности как для медицинских работников, так и для специалистов в области ветеринарии, карантина и защиты растений.

В Стратегии отмечена необходимость формирования профессиональной этики лиц, ответственных за назначение противомикробных препаратов, химических и биологических средств, особенно в части продвижения лекарственных препаратов, а также пестицидов.

Совершенствование мер по предупреждению и ограничению распространения и циркуляции возбудителей с антимикробной резистентностью

Для решения данной задачи в первую очередь требуется внедрение новых эффективных методических подходов при профилактике, диагностике и лечении инфекционных заболеваний.

Необходимы разработка и внедрение клинических рекомендаций и стандартов оказания медицинской помощи, включающих выделение и идентификацию возбудителей инфекционных заболеваний, определение их профиля резистентности к антимикробным препаратам, оптимизация схем антибиотикотерапии.

Другим важнейшим направлением является стандартизация процедур сопровождения применения антимикробных препаратов и дезинфекционных средств в медицинских организациях, включая обоснование назначения, а также мониторинг эффективности их применения и порядок замены (в том числе на методы биологической дезинфекции).

Обязательны новые методические подходы для повышения в рамках стационаров эффективности трехстороннего взаимодействия лечащего врача, клинического фармаколога и врача-бактериолога.

Необходимо совершенствовать процедуры учета и регистрации случаев инфекций, связанных с оказанием медицинской помощи, в том числе вызываемых устойчивыми формами

патогенов. При этом усиление мер, направленных на повышение выявляемости случаев, связанных с оказанием медицинской помощи, не должно, по крайней мере на первых порах, сопровождаться ужесточением мер дисциплинарной ответственности, в противном случае руководители лечебно-профилактических учреждений могут быть заинтересованы в сокрытии возникающих инфекций, а также в искажении данных для создания положительной динамики.

Еще одной важной задачей является совершенствование систем контроля качества средств защиты растений, а также определение, апробация и внедрение альтернативных методов использования пестицидов, которые тормозят в популяциях вредных организмов растений процессы развития устойчивости к ним.

Также требуется развитие нормативно-методической базы по расчету нормативно допустимых сбросов загрязняющих веществ в водные объекты, предельно допустимых выбросов загрязняющих веществ в атмосферу, а также нормативов образования отходов производства и потребления предприятий, использующих в производственных целях или осуществляющих промышленный выпуск противомикробных и/или противовирусных лекарственных средств.

Обеспечение системного мониторинга распространения антимикробной резистентности

В настоящее время идет активная работа по обеспечению национальной системы биологической безопасности Российской Федерации, и мониторинг биологических угроз, в том числе распространения антимикробной резистентности, является ее важнейшим функциональным элементом.

Для реализации данной задачи необходимы:

- мониторинг распространения резистентности к антимикробным препаратам по данным лабораторной диагностики, что является одним из основных направлений мониторинга биологических и химических угроз в Российской Федерации;
- материально-техническое, организационное, кадровое усиление и развитие микробиологических лабораторий медицинских и ветеринарных организаций;
- продвижение новых, более совершенных методов диагностики профиля устойчивости патогенов к лекарственным препаратам и дезинфекционным средствам;
- контроль остаточного содержания антибиотиков в продовольственном сырье животного происхождения и пищевой продукции.

В отдельное направление выделено создание и развитие единой межведомственной базы данных о распространении резистентности к антимикробным препаратам и включение ее в структуру баз данных формируемой в настоящее время государственной информационной системы в области обеспечения химической и биологической безопасности.

Изучение механизмов возникновения антимикробной резистентности. Разработка противомикробных препаратов и альтернативных методов, технологий и средств профилактики, диагностики и лечения инфекционных заболеваний человека, животных и растений

В рамках решения данной задачи запланировано проведение фундаментальных и прикладных научных исследований и разработок по нескольким десяткам направлений.

В целом по данной задаче необходимо:

- проведение фундаментальных и прикладных научных исследований в области микробной экологии человека, животных и растений;

- изучение механизмов формирования и преодоления резистентности патогенных микроорганизмов и вредных организмов растений:
- разработка новых средств и методов диагностики, профилактики и лечения инфекционных болезней человека, животных и растений.

Обязательна интенсификация исследований в области разработки и внедрения в практику новых лекарственных препаратов. При этом необходимо отметить, что разработка новых антибиотиков — это исключительно важное направление борьбы с распространением инфекционных болезней, однако его не следует рассматривать в качестве главного или единственного направления в борьбе с антимикробной резистентностью. Данная точка зрения консолидированно поддерживается Всемирной организацией здравоохранения. Необходима разработка биологических лекарственных препаратов, в том числе иммунобиологических.

Также к направлениям решения данной задачи могут быть отнесены:

- создание и внедрение в практику лекарственных препаратов, способствующих снижению вирулентности патогенных микроорганизмов, с использованием технологий, подавляющих отдельные свойства патогенных биологических агентов (образование биопленок, токсинов и других агрессивных соединений), позволяющих элиминировать гены устойчивости к лекарственным препаратам, препятствующих переносу этих генов к чувствительным микроорганизмам, или снижающих экспрессию таких генов;
- разработка технологий получения препаратов (с использованием наноструктур), способных преодолеть устойчивость микроорганизмов и вредных организмов растений к лекарственным препаратам, химическим и биологическим средствам;
- разработка, апробация и внедрение новых методик контроля антибиотиков в пищевых продуктах и продовольственном сырье;
- разработка диагностических препаратов на основе технологий секвенирования следующего поколения и чиповых технологий для идентификации генов устойчивости микроорганизмов к антибактериальным препаратам в клиническом материале, пищевых продуктах и продовольственном сырье;
- разработка и использование в практике методов, позволяющих диагностировать состояния микробиоты, методов сохранения и восстановления нарушенных природных микробиоценозов человека, сельскохозяйственных животных и растений, а также производства продуктов питания, которые нормализуют микробиоту организма человека.
- В государственных коллекциях патогенных микроорганизмов необходимо создание панелей штаммов микроорганизмов, состоящих из патогенов, обладающих устойчивостью к лекарственным препаратам, химическим и биологическим средствам. Кроме того, требуется проведение стандартизации и объединения баз данных геномов таких возбудителей.

Совершенствование мер по осуществлению контроля за оборотом противомикробных препаратов, химических и биологических средств, введение ограничений, исключающих бесконтрольное применение противомикробных препаратов, химических и биологических средств

В Стратегии предусмотрено формирование единых механизмов взаимодействия по сдерживанию распространения устойчивости микроорганизмов и вредных организмов растений, оптимизируя многоуровневые организационные и функциональные

взаимодействия в рамках национальной системы обеспечения химической и биологической безопасности Российской Федерации. В этих целях в Стратегии определен ряд мероприятий, направленных на совершенствование нормативно-правового регулирования отношений в области сдерживания распространения устойчивости микроорганизмов и вредных организмов растений, которое предусмотрено в рамках формирования законодательства о биологической безопасности.

Одними из первых должны быть приняты меры, направленные на совершенствование контроля за рецептурным отпуском противомикробных препаратов. Недопустимость безрецептурного отпуска антимикробных лекарственных препаратов как для медицинского, так и для ветеринарного применения не вызывает сомнений и выделяется в методических документах Всемирной организации здравоохранения в качестве одной из наиболее значимых мер.

Важно подчеркнуть, что нередко встречающееся в средствах массовой информации утверждение о необоснованности и чрезмерности таких мер не соответствует действительности, так как антимикробные лекарственные препараты, внесенные, в частности, в категорию «Ј» Анатомо-терапевтически-химической классификации Всемирной организации здравоохранения, полностью соответствуют критериям отнесения к категориям рецептурного отпуска [6].

Другое встречающееся в средствах массовой информации утверждение о невыполнимости данных мер, в первую очередь вследствие многократного увеличения трудозатрат в лечебно-профилактических учреждениях, также некорректно, что подтверждается международной практикой применения разрабатываемых ВОЗ унифицированных протоколов назначения антимикробных препаратов и мониторинга эффективности их применения, в том числе с использованием средств электронного документооборота [7, 8].

В целом должен осуществляться учет производства и потребления антимикробных лекарственных препаратов, в том числе в рамках Федеральной государственной информационной системы мониторинга движения лекарственных препаратов от производителя до конечного потребителя с использованием маркировки (далее — ФГИС МДЛП) [9] или федеральной государственной информационной системы в области ветеринарии. Должны проводиться контроль перемещения антимикробных лекарственных препаратов через государственную границу Российской Федерации, а также отслеживание оборота, движения и распределения антимикробных препаратов путем ведения электронного учета с участием производителей, импортеров, организаций оптовой и розничной торговли, медицинских организаций, ветеринарных организаций, индивидуальных предпринимателей и юридических лиц, участвующих в разведении, выращивании и содержании животных, организаций — производителей кормов и кормовых добавок для животных.

В Стратегии предусмотрено принятие мер по рациональному назначению противомикробных препаратов, по запрещению нецелевого применения (в частности, для профилактики) антимикробных лекарственных препаратов. При осуществлении мер по данному направлению также планируется использование ФГИС МДЛП.

Будут осуществлены ужесточение требований к организации дистанционной торговли противомикробными препаратами и пестицидами и запрет рекламы противомикробных препаратов.

Отмечается важность введения производственного контроля за применением противомикробных препаратов, химических и биологических средств не только для медицинских организа-

ций, но и для ветеринарных организаций, государственных и частных предприятий, осуществляющих производство пищевых продуктов животного и растительного происхождения, кормов и кормовых добавок для животных, проводящих разведение, выращивание и содержание сельскохозяйственных животных, а также аквакультуры. Требуется интенсифицировать меры предотвращения нелегального ввоза и незаконного использования фармацевтических субстанций противомикробных препаратов и действующих веществ пестицидов в сельском хозяйстве.

Обеспечение межведомственного взаимодействия и развитие международного сотрудничества в области предупреждения и ограничения распространения антимикробной резистентности

Одним из основных направлений в рамках данной задачи является развитие методического, материально-технического обеспечения и кадрового потенциала медицинских и ветеринарных организаций, производственных предприятий, индивидуальных предпринимателей, осуществляющих деятельность, предусматривающую оборот и использование противомикробных препаратов, химических и биологических средств.

Другим направлением является организация взаимодействия в рамках осуществления мониторинга биологических угроз. На региональном уровне мониторинг будет проводиться с участием микробиологических и токсикологических лабораторий организаций, на уровне федеральных органов исполнительной власти — с участием референс-центров по отдельным видам медицинской, ветеринарной, фитосанитарной и иной деятельности. Кроме того, для мониторинга необходимо привлечение методического верификационного центра по вопросам антимикробной резистентности. В качестве отдельного вопроса в рамках взаимодействия на данном уровне следует рассматривать оценку возможности и целесообразности организации деятельности референс-центра(ов) по определению остаточных концентраций антибиотиков в пищевых продуктах и продовольственном сырье. На межведомственном уровне в мониторинге участвует координационно-аналитический центр по обеспечению химической и биологической безопасности.

При создании и развитии единой межведомственной базы данных о распространении антимикробной резистентности особенно важна координация взаимодействия федеральных органов исполнительной власти. Это является непременным условием для унификации протоколов ведения такой базы данных и как следствие — для обеспечения эффективности ее использования.

Кроме того, очевидна необходимость унификации протоколов и процедур регистрации выявления резистентности патогенов и результатов их изучения, в первую очередь в части, касающейся инфекций, связанных с оказанием медицинской помощи. Эти процедуры должны быть алгоритмичными, их внедрение ни в коем случае не должно повлечь непосильного увеличения трудозатрат персонала учреждений здравоохранения. Вновь следует подчеркнуть значимость положительной мотивации руководителей лечебно-профилактических учреждений и ветеринарных организаций, которая должна предупреждать и исключать наличие их заинтересованности в сокрытии случаев выявления инфекций и способствовать повышению эффективности принимаемых мер.

Значительная роль в организации межведомственного взаимодействия, направленного на реализацию мер по борьбе с устойчивостью, отведена находящимся в ведении уполно-

моченных федеральных органов исполнительной власти учреждениям, которые осуществляют ведение государственных коллекций патогенных микроорганизмов.

Также в рамках организации межведомственного взаимодействия предусмотрены поддержка и развитие международного сотрудничества в рамках Союзного государства, Евразийского экономического союза, стран БРИКС, Шанхайской организации сотрудничества, Организации Объединенных Наций по вопросам предупреждения распространения антимикробной резистентности в мире.

Ожидаемые результаты реализации Стратегии. Заключение

Таким образом, можно констатировать, что Стратегия предупреждения и преодоления устойчивости микроорганизмов и вредных организмов растений к лекарственным препаратам, химическим и биологическим средствам на период до 2030 года и дальнейшую перспективу является комплексным документом, обеспечивающим возможность реализации на основе системного подхода широкого спектра мероприятий по различным направлениям. Это позволит приблизиться к решению наиболее важных и сложных задач, необходимых для предупреждения рисков, связанных с одной из основных биологических угроз — распространением устойчивости возбудителей инфекционных и паразитарных болезней, а также вредных организмов растений и иных биологических агентов к лекарственным препаратам, химическим и (или) биологическим средствам.

Стратегия позволяет осуществлять долгосрочное планирование фундаментальных и прикладных научных исследований, опытно-конструкторских работ, определение наиболее актуальных и перспективных «точек роста» для максимально эффективного использования материально-технических, финансовых и административных ресурсов.

В результате реализации положений Стратегии ожидается установление базовых показателей, характеризующих распространенность устойчивости микроорганизмов и вредных организмов растений. Будет проводиться постоянное планомерное повышение осведомленности населения о корректном применении антимикробных лекарственных препаратов, их адекватной замене, недопустимости самолечения, ожидается расширение охвата населения пропагандой иммунопрофилактики и здорового образа жизни. Также запланирована переподготовка специалистов, ответственных за назначение антимикробных лекарственных препаратов, за применение химических и биологических дезинфекционных средств. Переподготовка будет проводиться по вопросам сдерживания распространения резистентности микроорганизмов и вредных организмов растений. Повышение частоты выявляемости резистентных форм возбудителей инфекционных болезней человека, животных и растений в конечном счете должно способствовать стабилизации частоты возникновения связанных с оказанием медицинской помощи инфекций, вызванных микроорганизмами с множественной лекарственной устойчивостью, а в дальнейшем формированию отрицательной динамики роста относительной заболеваемости инфекционными болезнями, вызванными устойчивыми формами микроорганизмов.

В настоящее время уже начата работа по подготовке национального плана мероприятий, направленного на реализацию положений Стратегии. К данной работе планируется привлечение всех федеральных органов исполнительной власти, обладающих соответствующими полномочиями и компетенциями, в том числе в области ветеринарии, карантина и защиты рас-

тений, в сферах обращения лекарственных средств, охраны окружающей среды, защиты прав потребителей и других соответствующих областях деятельности.

Информация об отсутствии конфликта интересов. Автор заявляет об отсутствии конфликта интересов, требующего раскрытия в данной статье.

Литература / References

- Antimicrobial Resistance in the European Union and the World. The EU's Contributions to the Solutions of the Global Antimicrobial Resistance Problem Keynote Address at the Conference on Combating Antimicrobial Resistance: Time for Action. Copenhagen, Denmark. Published 14 Mar 2012. Available from: http://www.who.int/dg/speeches/2012/ amr_20120314/en/
- UK Calls for International Action on Antimicrobial Resistance. UK Government Department of Health. Press Release. Published 20 May 2013 // Available from: https://www.gov. uk/government/news/uk-calls-for-international-action-on-antimicrobial-resistance
- Resolution Adopted by the General Assembly on 5 October 2016. Available from: http://www.who.int/antimicrobialresistance/interagency-coordination-group/UNGA-AMR-RES-71-3-N1631065.pdf?ua=1
- 4. Руководство по ведению пациентов с латентной туберкулезной инфекцией. [Guidelines for Managing Patients with Latent Tuberculosis Infection (In Russ.)] Available from: http://apps.who.int/medicinedocs/documents/s21889ru/ s21889ru.pdf
- 5. Основы государственной политики в области обеспечения химической и биологической безопасности Российской Федерации на период до 2025 года и дальнейшую перспективу (утв. Президентом РФ 1 ноября 2013 г. № Пр-2573). [Bases of State Policy in the Field of Ensuring Chemical and Biological Safety of the Russian Federation until 2025 and Further Prospect (Dated 01 Nov. 2013 No Pr-2573). (In Russ.)] Available from: http://www.garant.ru/products/ipo/prime/doc/70423098/
- 6. Решение Коллегии Евразийской экономической комиссии от 29 декабря 2015 г. № 178 «О Правилах определения категорий лекарственных препаратов, отпускаемых без рецепта и по рецепту». [The Decision of Board of the Euroasian Economic Commission «Rules of Determination of Categories of the Medicines which are Released without Recipe and According to the Recipe» (dated 29 Dec. 2015 No. 178). (In Russ.)]
- WHO Model List of Essential Medicines. 20th List (March 2017). Available from: http://www.who.int/medicines/ publications/essentialmedicines/20th_EML2017_FINAL_ amendedAug2017.pdf?ua=1
- 8. WHO Model List of Essential Medicines for Children. 6th List (March 2017). Available from: http://www.who.int/medicines/publications/essentialmedicines/6th_EMLc2017_FINAL_amendedAug2017.pdf?ua=1
- Приказ Министерства здравоохранения РФ от 30 ноября 2015 г. № 866 «Об утверждении концепции создания федеральной государственной информационной системы мониторинга движения лекарственных препаратов от производителя до конечного потребителя с использованием маркировки». [Order of the Ministry of Health of the Russian Federation «About the Approval of the Concept of Creation of the Federal State Information System of Monitoring of the Movement of Medicines from the Producer to the End User with Marking Use» (Dated Nov. 30 2015 No. 866). (In Russ.)] Available from: https://www.rosminzdrav. ru/documents/9490-prikaz-ot-30-noyabrya-2015-g-n-866-ob-utverzhdenii-kontseptsii-sozdaniya-federalnoygosudarstvennoy-informatsionnoy-sistemy-monitoringadvizheniya-lekarstvennyh-preparatov-ot-proizvoditelya-dokonechnogo-potrebitelya-s-ispolzovaniem-markirovki

Об авторе

Федеральное государственное бюджетное учреждение «Научный центр экспертизы средств медицинского применения» Министерства здравоохранения Российской Федерации, Российская Федерация, 127051, Москва, Петровский бульвар, д. 8, стр. 2

Давыдов Дмитрий Сергеевич. Начальник лаборатории бактериофагов и препаратов нормофлоры с коллекцией микроорганизмов Испытательного центра экспертизы качества МИБП, канд. биол. наук

Поступила 14.11.2017 Принята к публикации 08.02.2018

Authors

Federal State Budgetary Institution «Scientific Centre for Expert Evaluation of Medicinal Products» of the Ministry of Health of the Russian Federation, 8/2 Petrovsky boulevard, Moscow 127051, Russian Federation

Dmitriy S. Davydov. Head of the Laboratory of Bacteriophages and Normal Flora Preparations with the Collection of Microorganisms of the Testing Centre for Evaluation of Medicinal Immunobiological Products' Quality. Candidate of Biological Sciences

Received 14 November 2017 Accepted 8 February 2018 УДК 615.921.8-097 DOI: 10.30895/2221-996X-2018-18-1-57-64 ШИФР СПЕЦИАЛЬНОСТЬ 03.02.03 Микробиология 03.03.03 Иммунология

Оценка иммунобиологических свойств вакцинных штаммов Bordetella pertussis

* И. А. Алексеева, О. В. Перелыгина

Федеральное государственное бюджетное учреждение «Научный центр экспертизы средств медицинского применения» Министерства здравоохранения Российской Федерации, Российская Федерация, 127051, Москва, Петровский бульвар, д. 8, стр. 2

Исследование, проведенное при оценке иммунобиологических свойств вакцинных коклюшных штаммов, дало возможность стандартизовать используемую для производства вакцины коклюшную бактериальную массу по содержанию поверхностных антигенов — агглютиногенов 1, 2 и 3; были установлены определенные уровни содержания агглютиногенов в посевных сериях, которые позволяют влиять на протективную активность коклюшной вакцины. Гетерогенность популяции штаммов бактерий была уменьшена за счет проведения селекции отдельных колоний по признаку экспрессии агглютиногенов. Посевные серии В. pertussis, полученные из вакциных штаммов, подвергнутых селекции, были направлены на предприятия, производящие коклюшный компонент АКДС вакцины. Использование при производстве коклюшной вакцины более однородной бактериальной массы, активно экспрессирующей агглютиногены 1, 2, 3, позволило повысить показатели иммуногенной активности коклюшного компонента АКДС вакцины. Безопасность цельноклеточной коклюшной вакцины, изготовленной из посевной серии, прошедшей стандартизацию, не понизилась.

Ключевые слова: цельноклеточная коклюшная вакцина; коклюшный компонент АКДС вакцины; агглютиногены; селекция колоний Bordetella pertussis; протективная активность коклюшной вакцины

Для цитирования: Алексеева ИА, Перелыгина ОВ. Оценка иммунобиологических свойств вакцинных штаммов Bordetella pertussis. БИОпрепараты. Профилактика, диагностика, лечение 2018; 18(1): 57–64. DOI: 10.30895/2221-996X-2018-18-1-57-64

* Контактное лицо: Алексеева Ирина Андреевна; Alekseeval@expmed.ru

Evaluation of Immunobiological Properties of Bordetella pertussis Vaccine Strains

* I. A. Alekseeva, O. V. Perelygina

Federal State Budgetary Institution «Scientific Centre for Expert Evaluation of Medicinal Products» of the Ministry of Health of the Russian Federation, 8/2 Petrovsky boulevard, Moscow 127051, Russian Federation

The study performed as part of evaluation of immunobiological properties of *Bordetella pertussis* vaccine strains offered an opportunity to standardize pertussis bacterial mass based on the content of surface antigens — agglutinogens 1, 2 and 3. Certain levels of agglutinogens in seed lots were found to be capable of modifying the protective activity of pertussis vaccine. The heterogeneity of the bacterial strain population was reduced by applying selection criteria for colonies based on expression of agglutinogens. *B. pertussis* seed lots derived from vaccine strains that had undergone selection were sent to manufacturers of the pertussis component of DTP vaccine. Production of pertussis vaccine using a more homogenous bacterial mass that actively expresses agglutinogens 1, 2 and 3 made it possible to enhance immunogenic activity of the pertussis component of DTP vaccine. The safety of the whole-cell pertussis vaccine produced from the standardized seed lot was not componised.

Key words: whole-cell pertussis vaccine; pertussis component of DTP vaccine; agglutinogens; selection of Bordetella pertussis colonies; protective activity of pertussis vaccine

For citation: Alekseeva IA, Perelygina OV. Evaluation of Immunobiological Properties of Bordetella pertussis Vaccine Strains. BIOpreparations. Prevention, Diagnosis, Treatment 2018; 18(1): 57–64. DOI: 10.30895/2221-996X-2018-18-1-57-64

* Contact person: Alekseeva Irina Andreevna; Alekseeval@expmed.ru

В настоящее время коклюшная инфекция остается актуальной проблемой для здравоохранения всех стран мира. В основном этому заболеванию подвержены младенцы и дети младшего возраста. До введения в практику здравоохранения профилактических прививок коклюш занимал второе (редко — третье) место по заболеваемости и протекал чаще в острой форме, с осложнениями, характеризовался высокими показателями смертности [1].

В США до введения вакцинопрофилактики заболеваемость составляла 157 случаев на 100 тыс. населения. Активное применение с 1950 по 1975 г. цельноклеточной коклюшной вакцины (ЦКВ), входящей в состав АКДС (DTwP), позволило резко снизить заболеваемость до 1000–2000 случаев в год [2]. Подобная тенденция в 1960–1974 гг. была отмечена в Великобритании, Японии, ВНР, ЧССР, ГДР и других странах [1, 3].

В Российской Федерации в допрививочный период частота регистрации случаев коклюша составляла 390 и более на 100 тыс. населения. После начала широкого использования АКДС вакцины заболеваемость к концу 1970-х гг. составляла 5,8–10,8 на 100 тыс. населения [4].

Таким образом, использование в иммунопрофилактике комбинированной вакцины АКДС (DTwP), содержащей ЦКВ, способствовало резкому снижению числа случаев коклюша, реже стали регистрироваться тяжелые формы заболевания и летальные исходы [2, 3, 5, 6].

В то же время необходимо отметить страны (например, Франция, Канада, Италия, Швеция), использование в которых DTwP не привело к значительному снижению заболеваемости коклюшем, что впоследствии было объяснено использованием вакцин с низкой иммуногенной активностью [7–9].

Основываясь на понимании необходимости выпуска эффективных профилактических препаратов, ВОЗ разработала рекомендации, касающиеся качества (производства и выпуска серий), безопасности и активности ЦКВ, которые периодически обновляются [10].

Отечественная ЦКВ, входящая в состав АКДС вакцины, не всегда соответствовала требованиям ВОЗ. Так, в конце 1970-х и начале 1980-х гг. только половина выпущенных серий цельноклеточной коклюшной вакцины соответствовала принятому ВОЗ количественному показателю активности, определяемому с помощью протективного теста на мышах при интрацеребральном введении заражающей дозы бактерий [10]. Требуемая протективная активность к истечению срока годности сохранялась только у 79,9 % испытанных серий коклюшной вакцины [11, 12]. Сотрудники специализированной лаборатории ГИСК им. Л.А. Тарасевича, проведя большую исследовательскую работу, повысили качество ЦКВ до требуемых показателей. Большое внимание было уделено ростовым свойствам питательной среды и стандартности операций при ее изготовлении. Культуры Bordetella pertussis, полученные из штаммов, используемых для производства коклюшной вакцины (коклюшной суспензии), были оценены по гистаминсенсибилизирующей и лейкоцитозстимулирующей активностям; разработаны критерии по оценке указанных активностей; обоснована целесообразность использования в производстве коклюшной вакцины штаммов, обладающих средней токсичностью при высокой защитной активности [11].

Накопленные знания об изменчивости коклюшных бактерий, наблюдаемой как в условиях научной лаборатории, так и при производстве вакцины на предприятии, регистрируемые у циркулирующих штаммов *B. pertussis* клональные и серотиповые изменения по сравнению с вакцинными штаммами, недостаточная стандартность и стабильность коклюшного ком-

понента требуют его дальнейшего совершенствования [13–18]. В связи с этим целью работы являлось продолжение исследований по повышению качества цельноклеточной коклюшной вакцины (коклюшного компонента АКДС вакцины); задачей — изучение иммунобиологических свойств штаммов *B. pertussis* и использование выявленных закономерностей для повышения качества коклюшного компонента вакцины.

Материалы и методы

Вакцинные штаммы и посевные серии Bordetella pertussis. Изучены иммунобиологические свойства шестнадцати вакцинных штаммов B. pertussis, которые использовались в разные годы и используются в настоящее время для производства ЦКВ, являющейся компонентом АКДС вакцины.

Штаммы 39, 298, 312, 345, 475 относятся к серотипу 1.2.3; штаммы 38, 187, 305 — к серотипу 1.2.0; штаммы 108, 160, 178, 262, 267, 429, 688, 703 — к серотипу 1.0.3; штамм 18323, используемый для заражения иммунизированных мышей, к серотипу 1.2.3.

Вакцинные штаммы были получены от детей, больных коклюшем, в начальный период широкого использования АКДС вакцины в нашей стране.

Изучение иммунобиологических свойств вакцинных штаммов и посевных серий проводили с использованием экспериментальных серий вакцин, изготовленных из каждого штамма специализированной лабораторией ГИСК им. Л.А. Тарасевича в соответствии с производственным регламентом (ПР) изготовления коклюшной вакцины № 136-69.

Стандартные образцы. Калибрование протективной активности цельноклеточной коклюшной вакцины проводили при использовании стандартного образца коклюшной вакцины ОСО 42-28-89 иммуногенности коклюшной вакцины (сер. 3). Калибрование ОСО 42-28-89 в международных единицах проводили в сравнении с международными стандартными образцами коклюшной вакцины выпуска 1980 г. (NIBSC code: 66/302; 66/303).

Сыворотки. Серотиповой состав популяции бактерий вакцинных штаммов изучали при использовании сывороток диагностических коклюшных к агглютиногенам 1, 2, 3 и паракоклюшных к агглютиногену 14, адсорбированных для реакции агглютинации (РА) производства филиала «Медгамал» ГУ НИИЭМ им. Н.Ф. Гамалеи.

Питательные среды. В исследовании были использованы среды Борде-Жангу и казеиново-угольный агар (КУА) с 30 и 10 % крови человека соответственно. Среды были приготовлены в соответствии с прописями, приведенными в ПР изготовления коклюшной вакцины.

Животные. Вирулентность вакцинных штаммов *B. pertussis* исследовали на аутбредных мышах массой тела 12–14 г; дермонекротическую активность — на белокожих кроликах породы шиншилла весом 1,5–2,0 кг. Протективную активность вакцинных штаммов, посевных серий и коклюшной вакцины — на инбредных (линии CBWA и F1 (C57BI/6J×CBA)) и аутбредных мышах весом 10–12 г. Животные поступали из филиала «Столбовая» ФГБУН НЦБМТ ФМБА России.

Методы. Оценку вирулентных свойств бактерий проводили при интраназальном заражении мышей культурой *B. pertussis*; дермонекротическую активность — при внутрикожном введении культуры кроликам; протективную активность — при интрацеребральном заражении иммунизированных мышей вирулентным штаммом 18323. Серотиповой состав популяции бактерий вакцинных штаммов *B. pertussis* определяли в реакции агглютинации (PA) с типоспецифическими сыворотками.

Для стандартизации условий проведения реакции при каждой постановке РА использовали референс-препарат — коклюшную вакцину. Использованные методы подробно изложены в МУК 4.2.2317-08 «Отбор, проверка и хранение производственных штаммов, коклюшных, паракоклюшных и бронхосептикозных бактерий».

Статистическую обработку результатов проводили с использованием стандартного пакета программы Excel.

Результаты и обсуждение

Коклюшная вакцина представляет собой убитые бактериальные клетки *B. pertussis*. Использование для производства вакцины штаммов с высокой протективной активностью и невысокой токсичностью при соблюдении технологического процесса изготовления вакцины способно обеспечить высокую активность и специфическую безопасность препарата. В связи с этим особое внимание при изготовлении коклюшной вакцины должно уделяться штаммам.

Руководящие документы ВОЗ по изготовлению коклюшной вакцины указывают, что при производственном процессе бактерии *В. рertussis* не должны изменять или терять свои первоначальные свойства (морфологические, серологические, серотиповой состав, показатели специфической токсичности и протективной активности), установленные при характеристике используемого вакцинного штамма [10]. Кроме того, эксперты ВОЗ считают необходимым присутствие в вакцине поверхностных антигенов — агглютиногенов 1, 2, 3 (АГГ1, АГГ2, АГГ3), которые усиливают протективный эффект коклюшных

вакцин [10]. В документах ВОЗ, а также в научной литературе отсутствуют сведения о конкретных критериях количественного содержания агглютиногенов 1, 2, 3 в коклюшной вакцине, используя которые можно было бы влиять на протективную активность изготовленной вакцины.

Бактериальные клетки *B. pertussis* подвержены влиянию разнообразных факторов окружающей среды, результатом влияния является изменение исходных иммунобиологических свойств клетки, что создает трудности при их использовании в производстве вакцины [13, 19, 20]. Неизменность свойств клетки, которая должна лежать в основе производственного процесса изготовления вакцины, требует постоянного надзора и контроля за иммунобиологическим состоянием вакциных штаммов.

В связи с этим при микробиологической работе с бактериальной культурой основной акцент был сделан на контроль за сохранением исходных свойств вакцинных штаммов в посевных сериях.

Вакцинные штаммы были охарактеризованы по основным иммунобиологическим показателям (табл. 1). Представленные в таблице данные демонстрируют вариабельность иммунобиологических свойств бактерий *B. pertussis*, используемых в производстве коклюшной вакцины. Штаммы различаются между собой по серотиповому составу и способности экспрессировать АГГ1, АГГ2, АГГ3; в меньшей степени различия выражены в показателях дермонекротической активности; отличия также проявлялись в вирулентности и протективной активности. Так, протективная активность вакцин с концентрацией 20 млрд кле-

Таблица 1. Иммунобиологические свойства вакцинных штаммов B. pertussis

Штамм	Протективная ак-	Дермонекротиче- ская активность,	Вирулентность при интрана- зальном заражении,		отиповой сі глютиноген					
	тивность, МЕ/мл	некроз/см	млн микр. кл.	1	2	3				
		Выделен	ы в 1950–1958 гг.							
187	3,5	1,1 × 1,0	35,4	320	80	_				
262	9,4; 15,2	1,3 × 1,4 1,6 × 1,5	31,0–64,2	6400	_	3200				
305	6,7	1,1 × 1,3	64,9	800	800	_				
312	9,0; 16,4	1,5 × 1,0 1,3 × 1,8	70,0 35,3	3200 12 800	1600 3200	800 6400				
345	12,2	1,4 × 1,6	34,6	3200	3200	160				
	Выделены в 1966–1971 гг.									
38	19,1	1,0 × 1,5	42,1	5120	2560	_				
39	20,4	1,6 × 1,7	74,3	10 240	5120	5120				
108	4,8	0,8 × 1,0	101,0; 47,1	1280	_	640				
160	19,7	1,9 × 1,8	24,0	10 240	_	5120				
178	14,9	1,1 × 1,1	30,8	10 240	_	5120				
267	11,7	1,1 × 1,2	43,2	5120	_	2560				
298	9,9; 23,1	1,2 × 1,7	83,1; 25,8	5120	5120	1280				
429	21,8 10,3	1,6 × 1,6 1,1 × 1,6	24,0; 64,7	5120	_	10240				
475	13,6	1,3 × 1,3	76,7	5120	640	1280				
688	7,3	1,4 × 1,7	51,4	640	_	160				
703	15,1	2,0 × 1,9	94,1; 53,8	5120	_	5120				

Примечание. Знак (—) обозначает отсутствие агглютиногена в популяции бактерий данного штамма.

ток/мл, приготовленных из разных штаммов, колебалась от низких значений (3,5 международной единицы в мл (МЕ/мл)) до высоких (23,1 МЕ/мл) при существующем требовании ВОЗ не менее 8 МЕ/мл.

Приведенные результаты исследования (табл. 2) позволили предположить наличие взаимосвязи между уровнем содержания агглютиногенов 1, 2, 3 в посевной серии и протективной активностью: чем выше содержание агглютиногенов в клетках популяции бактерий штамма, тем большее значение имеет показатель протективной активности коклюшной вакцины, приготовленной из клеток данного штамма.

Посевные серии, в которых агглютиногены 1, 2, 3 в реакции агглютинации определялись типоспецифическими сыворотками в титре 200–800, проявляли невысокую протективную активность. Посевные серии, в которых агглютиногены 1, 2, 3 в реакции агглютинации определялись типоспецифическими сыворотками в титре 2560–10240, проявляли высокую протективную активность (≥ 10 МЕ/мл).

При использовании коэффициента парной ранговой корреляции Спирмена [21] установлена зависимость между зна-

чениями титров типоспецифических сывороток, отражающими содержание агглютиногенов 1, 2, 3 в коклюшной вакцине, и ее протективной активностью. Полученные значения коэффициента равнялись 0,80, 0,77 и 0,62 соответственно, что говорит о прямой высокой и умеренной (для последнего значения) взаимосвязи между сравниваемыми показателями.

Установлен нижний допустимый предел содержания АГГ1, АГГ2, АГГ3 в коклюшной вакцине. Так, при уровне агглютиногенов, выявляемых сывороткой в титре 1280, протективная активность вакцины обеспечивала 8 МЕ/мл — минимальное регламентированное требование, которое предъявляет ВОЗ к коклюшным вакцинам. Более высокое количественное содержание АГГ1, АГГ2, АГГ3, выявляемое типоспецифической сывороткой в титре 3200 и выше, демонстрирует более высокую протективную активность вакцины (≥ 10 МЕ/мл).

С целью выяснения причины различного содержания агглютиногенов в популяции бактерий разных штаммов и в коклюшных вакцинах была проведена оценка однородности популяции бактерий в лиофилизированной культуре *B. pertussis* разных партий высушивания. С этой целью лиофилизирован-

Таблица 2. Неоднородность популяции бактерий B. pertussis вакцинных штаммов

Штамм	Количество исследованных бактериальных образцов	Агглютинация куль типоспецифиче	Агглютинация культур из отдельных бактериальных образцов типоспецифическими сыворотками к агглютиногенам:					
	(колоний)	1	2	3				
39	12	9+++ 1++ 2+ 5120*	5+++ 4++ 2+; 1– 160*	10+ 2- _*				
187	11	7+++ 1++ 3+ 3200	4+++ 3++ 1+ 3- 200	11 - -				
312	12	9+++ 2++ 1+ 5120	3+++ 3++ 4+; 2– 80	1++ 5+ 6- -				
38	10	5+++ 4++ 1+ 1600	3+++ 4++ 2+; 1 – 200	10-				
305	11	5+++ 3++ 2+; 1– 1600	4+++ 3++ 3+; 1– 400	3+++ 4++ 2+; 3- 200				
345	12	7+++ 4++ 1+ 6400	5+++ 3++ 2+; 1– 1600	3+++ 1++ 4+; 3– 80				
475	11	10+++ 1++ 10 240	6+++ 3++ 2+ 1280	5+++ 3++ 2+; 1– 640				
267	10	10+++ 10 240	1– –	8+++ 2++ 2560				
18323 тест-штамм	10	10+++ 10 240	9+++ 1++ 5120	7+++ 1++ 2+ 2560				

Примечание. Знак (-) обозначает отсутствие агглютиногена в популяции бактерий данного штамма.

^{*} Последняя строка в ячейках обозначает титр в реакции агглютинации для всей популяции бактерий штамма.

ную культуру регидратировали и высевали на чашки Петри с питательной средой так, чтобы получить изолированные колонии. Затем чашки Петри с засеянной культурой инкубировали при температуре $(36,0\pm0,5)$ °C в течение 3—4 суток. Выросшую культуру изучали под микроскопом-лупой.

Было установлено, что бактериальная биомасса после лиофильного высушивания представляла собой гетерогенную популяцию колоний, отличающихся по морфологическим признакам. Наряду с типичными для І фазы бактерий *В. pertussis* мелкими и полупрозрачными колониями имели место колонии среднего и крупного размера матового цвета.

Уровень агглютиногенов определяли в образцах бактериальной культуры, полученных из отобранных по морфологическим признакам отдельных типичных колоний. Из отобранных 10-12 колоний получали 10-12 бактериальных образцов. Для получения образца единичную колонию пересевали на питательную среду, собирали выросшую культуру и полученную коклюшную суспензию исследовали в РА на содержание АГГ1, АГГ2, АГГ3. Было установлено, что клетки бактериальных образцов, полученные из разных колоний популяции бактерий одного штамма, содержали разный уровень агглютиногенов. Так, например, из 12 колоний штамма 39 культура девяти колоний агглютинировалась типоспецифической сывороткой к АГГ1 на 3+; культура одной колонии — на 2+; двух колоний — на +. Из тех же 12 колоний культура пяти колоний агглютинировалась типоспецифической сывороткой к АГГ2 на 3+; культура четырех колоний на 2+; двух колоний — на +; одна колония не выявляла присутствие АГГ2. Из 12 колоний культура десяти колоний агглютинировалась типоспецифической сывороткой к АГГЗ на +; две колонии не выявляли присутствие АГГЗ. Таким образом, разные колонии популяции бактерий одного штамма отличались по способности синтезировать поверхностные антигены — агглютиногены 1, 2, 3. В связи с этим титр, установленный в реакции агглютинации при использовании культуры из общей биомассы, а не отдельных колоний, представляет собой среднее значение с учетом наличия в популяции коклюшных бактерий, экспрессирующих агглютиногены с разной интенсивностью. Титр типоспецифической сыворотки к АГГ1 всей популяции бактерий штамма 39 составил 5120; к АГГ2 — 160; к АГГ3 — 0.

Возможно, способность бактериальных клеток синтезировать АГГ с разной степенью интенсивности обусловлена изменчивостью популяции бактерий B. pertussis, проявляющейся при использовании лабораторных питательных сред, или это последствия лиофильного высушивания культур. Полученные данные продемонстрировали, что при хранении лиофилизированные культуры B. pertussis по морфологии колоний в разной степени становятся гетерогенными: наблюдается диссоциация бактерий, которая проявляется увеличением числа колоний R-формы и уменьшением числа колоний S-формы; отмечается снижение уровня АГГ на поверхности клетки.

Ранее при производстве вакцины проводили отбор колоний *B. pertussis*, основываясь только на их морфологических признаках. Как следует из полученных результатов, данный подход не является оптимальным, так как он не отражает способность коклюшных бактерий синтезировать поверхностные антигены— агглютиногены

Подтверждение неоднородности популяции бактерий штаммов и выявление прямой взаимосвязи между уровнем агглютиногенов в посевной серии и ее протективной активностью позволили усовершенствовать процесс подготовки посевных серий к лиофильному высушиванию.

Предложен новый метод приготовления посевных серий, основанный на микробиологической селекции колоний культуры по признаку экспрессии агглютиногенов. В соответствии с предложенным методом проводили отбор 10-15 колоний по морфологическому признаку, из отобранных колоний готовили бактериальные образцы и определяли в них в РА уровень АГГ1, АГГ2, АГГ3. Те образцы, которые продемонстрировали высокое содержание агглютиногенов (обычно из 10-15 колоний это 2-4 колонии), использовали для получения бактериальной массы, которую подвергали лиофильному высушиванию. В лиофильно высушенной посевной серии АГГ1, АГГ2, АГГЗ должны выявляться типоспецифическими сыворотками в титре не менее 1280. Если однократно проведенная селекция колоний не повышала уровень агглютиногенов 1, 2, 3 в популяции бактерий до требуемых показателей, то селекцию проводили повторно (табл. 3). С этой целью культуру, с которой уже была проведена селекция, высевали на питательную среду

Таблица 3. Титры типоспецифических сывороток к агглютиногенам 1, 2, 3, отражающие содержание агглютиногенов 1, 2, 3 в популяции бактерий вакцинных штаммов до и после проведения селекции колоний

Штамм, дата		Титр типоспецифической сыворотки к агглютиногенам			Титр типоспецифической сыворотки к агглютиногенам			
лиофилизации	1	2	3	лиофилизации	1	2	3	
	До селен	кции		После селекции				
305 04.80	800	200	_	305 02.98	3200	800	_	
305 02.98	3200	800	_	305 05.06	5120	1280	_	
187 02.81	1600	400	_	187 06.97	3200	800	_	
475 10.82	1600	200	800	475 05.97	3200	400	800	
475 05.97	2560	320	640	475 01.04	5120	1280	10 240	
267 10.1990	1280	_	1280	267 12.04	5120	_	10 240	
703 03.98	800	_	800	703 03.08	10240	_	10 240	

и вновь проводили отбор колоний по признаку интенсивности экспрессии агглютиногенов.

Селекция колоний *B. pertussis* по экспрессии агглютиногенов позволила провести стандартизацию культуры посевной серии, что повысило однородность популяции клеток *B. pertussis*. Приготовленная новым способом культура посевной серии обладает высокой протективной активностью. Начиная с 2000 г. на предприятия, производящие коклюшную вакцину, специализированная лаборатория ГИСК им. Л.А. Тарасевича стала направлять посевные серии *B. pertussis*, прошедшие селекцию по признаку количественного содержания агглютиногенов.

Использование на производстве посевных серий, прошедших селекцию и содержащих АГГ в количестве, выявляемом типоспецифической сывороткой в титре не менее чем 1280, позволило поднять показатели иммуногенной активности в коклюшной вакцине, изготовленной из данных посевных серий, о чем свидетельствуют данные, представленные в таблице 4. Из данных, представленных в таблице 4, видно, что в 2000 г., когда специализированная лаборатория ГИСК им. Л.А. Тарасевича только начала рассылать для изготовления ЦКВ посевные серии, прошедшие отбор, показатели протективной активности коклюшной вакцины были невысокими, лишь незначительно превышали минимально требуемую величину 8 МЕ/мл. Постепенно, по мере использования в производстве стандартизованных посевных серий, показатели активности стали расти и к 2008 г. достигли высоких значений. Это заключение относится как к показателям, полученным в ГИСК им. Л.А. Тарасевича (верхняя строка в ячейках таблицы), так и к результатам, полученным на предприятиях, производящих ЦКВ (нижняя строка в ячейках таблицы).

Высокая заболеваемость коклюшем в довакцинальную эру и ее значительное снижение после начала применения профилактических прививок убедительно доказывает значение иммунопрофилактики в защите восприимчивого населения от коклюша.

Используемые в разных странах для вакцинации детского населения цельноклеточные коклюшные вакцины отличаются по основным показателям: протективной активности и остаточной токсичности [22]. Это объясняется использованием разных технологий изготовления вакцины, разных штаммов, способом обезвреживания коклюшных бактерий, содержанием в дозе убитых клеток и др.

В связи с этим эффективность ЦКВ может колебаться в пределах от 46 до 92 % [23, 24]. В настоящее время отечественная ЦКВ по показателям качества соответствует требованиям ВОЗ и Европейской фармакопеи (ЕФ), но, учитывая значительную вариабельность иммунобиологических свойств В. pertussis, проблема, связанная с сохранением качества препарата и его усовершенствованием, всегда актуальна.

Микробиологическое исследование, проведенное в рамках усовершенствования порядка надзора за иммунобиологическими свойствами вакцинных коклюшных штаммов, дало возможность стандартизовать используемую коклюшную бактериальную массу по содержанию АГГ; были установлены конкретные уровни содержания агглютиногенов 1, 2 и 3 в посевных сериях, которые прогнозировали изготовление вакцины с регламентируемой активностью 8 МЕ/мл (выявляемые типоспецифическими сыворотками в титре не менее 1280) и высокой активностью (выявляемые типоспецифическими сыворотками в титре 3200 и выше).

Разработанный метод подготовки посевных серий *B. pertussis*, заключающийся в микробиологической селекции колоний по признаку экспрессии АГГ1, АГГ2, АГГ3, послужил основой для предложенного нового способа повышения иммуногенной активности коклюшных вакцин [25].

Помимо иммуногенной активности ведущим показателем качества коклюшной вакцины является ее безопасность. Эксперименты на животных показали, что безопасность ЦКВ, изготовленной из посевной серии, прошедшей стандартизацию по содержанию поверхностных протективных антигенов, не понизилась.

Таблица 4. Протективная активность коклюшных вакцин (МЕ/мл), изготовленных из посевных серий, прошедших селекцию по показателю содержания агглютиногенов 1, 2, 3

Штамм	2000 г.	2001 г.	2002 г.	2003 г.	2004 г.	2005 г.	2006 г.	2007 г.	2008 г.
700	9,2	8,9	7,5; 10,6	14,7	13,3	12,8	15,2	16,8	13,5
703	8,3; 8,7	9,5; 9,9	10,1; 9,2	10,5	11,0	15,3	19,1	18,2	16,4
267	8,5	7,7; 12,8	11,2	16,6	14,3	13,8	15,1	8,0; 16,6	15,9; 13,8
207	8,8; 9,0	8,8; 9,0	10,9; 9,8	11,2	12,9	10,8; 12,8	13,8	12,3;10,1	
38	9,2	10,0	5,8; 11,6	9,4; 12,3	11,6	14,3	10,2	15,2	14,2; 15,4
30	8,4	10,8	13,7	11,6	14,2	14,9	13,8	16,1	_
305	8,1	11,0	10,1	9,9	9,1	15,3	13,4	12,8	14,9
305	8,6; 8,9	9,4	10,2; 11,0	12,2	11,6	14,7	15,0	10,0; 9,4	13,2
312	10,1	9,7	8,3	12,3	13,0	14,8	13,7	15,2	15,9
312	9,5	8,1; 9,8	10,1	14,6; 11,6	14,5	16,1	10,9	12,7	16,0
475	9,2	9,9	8,4	7,3; 21,9	10,1	15,5	13,9	14,0	12,8
4/5	9,7	8,3; 10,8	14,8; 9,1	14,3	9,8; 11,5	12,1	11,8	15,1	13,8

Примечание. В числителе — данные ГИСК им. Л.А. Тарасевича; в знаменателе — данные предприятий, производящих АКДС вакцину (ОАО «Биомед» им. И.И. Мечникова, филиалы ФГУП «НПО «Микроген» в городах Уфа и Пермь).

В настоящее время в мире для иммунопрофилактики коклюша используют комбинированные препараты, содержащие в своем составе цельноклеточную или бесклеточную коклюшную вакцину (БКВ). В США было проведено крупномасштабное когортное исследование, в котором установлено, что бесклеточная вакцина даже при пяти прививках не обеспечивает такой длительный и напряженный противококлюшный иммунитет, как одна доза цельноклеточного препарата [26]. На основании материалов различных испытаний и учитывая рост заболеваемости коклюшем в странах, где используют только БКВ, эксперты ВОЗ пришли к заключению, что широкое использование БКВ может привести к возврату коклюшной инфекции [23, 27, 28]. В этой ситуации ВОЗ рекомендует странам, в национальных программах которых предполагается использование ЦКВ, продолжать использовать эти вакцины для первичной вакцинации. При этом подчеркивается, что ЦКВ является практически безопасной (very safe) [28]. Противопоказаний к применению ЦКВ нет, кроме редких анафилактических реакций у детей на введение этих вакцин ранее.

Необходимо отметить, что в Российской Федерации разработаны два новых профилактических противококлюшных препарата. Один из них содержит природный комплекс антигенов, выделенный из клеток *B. pertussis* [29], другой представляет собой рекомбинантную живую коклюшную вакцину для интраназального применения [30]. В настоящее время препараты проходят доклинические и клинические исследования.

Считаем, что в России для предотвращения ситуации, связанной с ростом заболеваемости коклюшем и имеющей место в странах, использующих для иммунизации только бесклеточные коклюшные вакцины, необходимо проводить вакцинацию отечественными комбинированными препаратами, содержащими цельноклеточную вакцину. Для ревакцинации помимо цельноклеточной вакцины возможно, при необходимости, использование бесклеточных коклюшных препаратов.

Выводы

- 1. Показана возможность и целесообразность стандартизации посевных серий *B. pertussis*, используемых для производства коклюшного компонента АКДС вакцины, по содержанию поверхностных антигенов — агглютиногенов.
- 2. Установлены конкретные величины содержания агглютиногенов 1, 2 и 3 в посевных сериях, которые прогнозируют изготовление вакцины с регламентируемой активностью 8 МЕ/мл (выявляемые типоспецифическими сыворотками в титре не менее 1280) и высокой активностью (выявляемые типоспецифическими сыворотками в титре не менее 3200 и выше).
- 3. Использование при изготовлении коклюшных вакцин посевных серий со стандартизованным уровнем агглютино-генов 1, 2, 3 позволило повысить иммуногенную активность цельноклеточной вакцины (коклюшного компонента АКДС).

Информация об отсутствии конфликта интересов. Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

Литература / References

- Захарова МС, Тамм ОМ, Воробьева АИ, Мяртин ЯК, ред. Коклюш и паракоклюш в Эстонской ССР. Таллин: ВАЛГУС; 1983. [Zakharova MS, Tamm OM, Vorobieva AI, Myartin YaK, eds. Whooping Cough and Parapertussis in the Estonian SSR. Tallinn: VALGUS; 1983 (In Russ.)]
- Clark T. Pertussis Epidemiology and Vaccination in the United States. 2012. Available from: https://www.hhs.gov/ sites/default/files/nvpo/nvac/meetings/pastmeetings/2012/ clark_and_messonnier_062512.pdf

- Tondella ML, Carlone GM, Messonnier N, Quinn CP, Meade BD, Burns DL, et al. International Bordetella pertussis Assay Standardization and Harmonization Meeting Report. Centers for Disease Control and Prevention, Atlanta, Georgia, United States, 19–20 July 2007. Vaccine 2009; 27(6): 803–14.
- 4. Покровский ВИ, Онищенко ГГ, Черкасский БЛ. Эволюция инфекционных болезней в России в XX веке. М.: Медицина; 2003. [Pokrovsky VI, Onishchenko GG, Cherkasy BL. Evolution of Infectious Diseases in Russia in the 21st Century. Moscow: Medicine; 2003 (In Russ.)]
- Захарова МС. Влияние вакцинации на мировое распространение коклюша. В кн.: Актуальные вопросы эпидемиологии коклюша. М.; 1977. С. 5–15. [Zakharova MS. The Effect of Vaccination on the Global Spread of Pertussis. In: Topical Issues of Epidemiology of Pertussis. Moscow; 1977. P. 5–15 (In Russ.)]
- 6. Чупринина РП, Алексева ИА, Обухов ЮИ, Соловьев ЕА. Эффективность иммунопрофилактики коклюша комбинированными вакцинами, содержащими цельноклеточную или бесклеточную коклюшную вакцину. БИОпрепараты. Профилактика, диагностика, лечение 2014; (4): 4–13. [Chuprinina RP, Alekseeva IA, Obukhov Yul, Soloviev EA. The Effectiveness of Immunization Pertussis Combined Vaccines Containing Whole Cell Pertussis or Acellular Pertussis Vaccine. BIOpreparation. Prevention, Diagnosis, Treatment 2014; (4): 4–13 (In Russ.)]
- Guiso N, de La Rocque F, Njamkepo E, Lécuyer A, Levy C, Romain O. Pertussis Surveillance in Private Pediatric Practices, France, 2002–2006. Emerg Infect Dis. 2008; 14(7): 1159–61.
- 8. De Melker HE, Schellekens JFP, Neppelenbroek SE, Mooi FR, Rumke HC, Conyn-van Spaendonck MA. Reemergence of Pertussis in the Highly Vaccinated Population of the Netherlands: Observations on Surveillance Data. Emerg Infect Dis. 2000; 6: 348–57.
- Mooi FR, van Oirschot H, Heuvelman K, van der Heide HG, Gaastra W, Willems RJ. Polymorphism in the Bordetella pertussis Virulence Factors P.69/Pertactin and Pertussis Toxin in the Netherlands: Temporal Trends and Evidence for Vaccine-Driven Evolution. Infect Immun. 1998; 66: 670–5.
- WHO Expert Committee on Biological Standardization.
 WHO Technical Report Series, No. 941. Annex 6.
 Recommendations for Whole-Cell Pertussis Vaccine.
 Geneva. World Health Organization. 2007; 301–32.
- 11. Чупринина РП. Система измерения и оценки качества коклюшного компонента в АКДС вакцине и проблемы стандартизации этого препарата: автореф. дис. ... д-ра мед. наук. Ростов-на-Дону; 1987. [Chuprinina RP. The Measurement and Assessment of the Quality of the Pertussis Component in the DTP Vaccine and the Problems of Standardization of This Drug. Dr. Med. Sci. [Thesis]. Rostov-on-Don; 1987 (In Russ.)]
- 12. Резепов ФФ, Чупринина РП, Чеботарева СВ, Кремлев ГИ. Препараты для иммунопрофилактики дифтерии, столбняка, коклюша и перспективы их совершенствования. В сб. тезисов Всесоюзной конференции «Стандартизация медицинских биологических препаратов для профилактики и диагностики инфекционных болезней». М.; 1979. С. 24–6. [Rezepov FF, Chuprinina RP, Chebotareva SV, Kremlev GUY. The Drugs for the Immunization of Diphtheria, Tetanus, Pertussis and Prospects for Their Improvement. In: Proc. of Abstracts All-Union Conference «Standardization of Medical Biological Preparations for the Prevention and Diagnosis of Infectious Diseases». Moscow; 1979. P. 24–6. (In Russ.)]
- 13. Лапаева ИА, Мебель СМ, Переверзев НА. Влияние некоторых факторов на изменчивость штаммов коклюшного микроба. Журнал микробиологии, эпидемиологии и иммунологии 1981; (3): 53–8. [Lapaeva IA, Mebel SM, Pereverzev ON. The Influence of Some Factors on the Variability of Strains of Pertussis Microbe. Journal of Microbiology, Epidemiology and Immunology 1981; (3): 53–8 (In Russ.)]
- Idigbe EO, Parton K, Wardlaw AC. Rapidly of Antigenic Modulation of Bordetella pertussis in Modified Hornibrook Medium. J Med Microbiol. 1981; 14(4): 409–18.

- 15. Борисова ОЮ, Мазурова ИК, Ивашинникова ГА, Гадуа НТ, Рудакова ИА, Салова НЯ и др. Генетическая характеристика штаммов Bordetella pertussis, выделенных от больных коклюшем в России. Медицинский альманах 2012; 2(21): 30—4. [Borisova OYu, Mazurova IK, Ivashinnikova HA, Gadua NT, Rudakova IA, Salova NYa, et.al. Genetic Characterization of Bordetella pertussis Strains Isolated from Patients with Pertussis in Russia. Medical Almanac 2012; 2(21): 30—4 (In Russ.)]
- 16. Демина AA. Закономерности эпидемического процесса коклюша и паракоклюша в условиях массовой противо-коклюшной иммунопрофилактики и характеристика циркулирующих возбудителей: дис. ... д-ра мед. наук. М.; 1970. [Demina AA. The Regularities of the Epidemic Process of Pertussis and Parapertussis in Terms of Mass Pertussis Immunization and Characterization of Circulating Pathogens. Dr. Med. Sci. Moscow; 1970 (In Russ.)]
- 17. Курова НН, Ценева ГЯ, Васильева ВЙ, Зверякина НН, Лямина ВП, Лосева ЛВ, Чупрынина РП. Молекулярное типирование штаммов Bordetella pertussis, циркулировавших в Санкт-Петербурге в период подъема заболеваемости. Молекулярная генетика, микробиология и вирусология 2006; (4): 13–5. [Kurova NN, Zeneva TN, Vasilieva VI, Zvarykina NN, Lyamina VP, Loseva LV, Chuprynina RP. Molecular Typing of Bordetella pertussis Strains Circulating in Saint-Petersburg in the Period of Increasing Incidence. Molecular genetics, Microbiology and Virology 2006; (4): 13–5 (In Russ.)]
- Мазурова ИК, Борисова ОЮ, Комбарова СЮ, Гадуа НТ, Алешкин ВА. Динамика изменчивости основных генов патогенности штаммов Bordetella pertussis, выделенных от больных коклюшем в Москве (1948–2005 гг.). Молекулярная медицина 2008; (1): 40–5. [Mazurova IK, Borisova OYu, Kombarova SYu, Gadoua NT, Aleshkin VA. The Variability of Major Pathogenicity Genes of Bordetella pertussis Strains Isolated from Patients with Pertussis in Moscow (1948–2005). Molecular medicine 2008; (1): 40–5 (In Russ.)]
- Kourova N, Caro V, Weber CH, Thiberge S, Chuprinina R. Comparison of the Bordetella pertussis and Bordetella parapertussis Isolates Circulating in Saint Peterburg between 1998 and 2000 with Russian Strains. J Clin Microbiol. 2003; 41(8): 3706–11.
- Borisova O, Kombarova SYu, Zakharova NS, van Gent M, Aleshkin VA, Mazurova IK, Mooi FR. Antigenic Divergence between Bordetella pertussis Clinical Isolates from Moscow, Russia, and Vaccine Strains. Clin Vaccine Immunol. 2007; 14(3): 234–8.
- 21. Коэффициент ранговой корреляции Спирмена. [The Spearman rank correlation coefficient (In Russ.)] Available from: www.infamed.com/stat/s05.html

Об авторах

Федеральное государственное бюджетное учреждение «Научный центр экспертизы средств медицинского применения» Министерства здравоохранения Российской Федерации, Российская Федерация, 127051, Москва, Петровский бульвар, д. 8, стр. 2

Алексеева Ирина Андреевна. Главный эксперт лаборатории анатоксинов и антитоксических препаратов Испытательного центра экспертизы качества МИБП, д-р мед. наук

Перелыгина Ольга Викторовна. Начальник лаборатории анатоксинов и антитоксических препаратов Испытательного центра экспертизы качества МИБП, канд. мед. наук

Поступила 09.10.2017 Принята к публикации 08.02.2018

- 22. Захарова МС. Проблемы специфической профилактики коклюша. В кн.: Специфическая профилактика коклюша. М.: Медгиз; 1958. С. 3–19. [Zakharova MS. Problem of Specific Prophylaxis of Whooping Cough. In: Specific Prophylaxis of Whooping Cough. Moscow: Medgiz; 1958. P. 3–19 (In Russ.)]
- 23. Pertussis Vaccines: WHO Position Paper August 2015. World Health Organization. Weekly Epidemiological Record 2015; 90(35): 433–460. Available from: http://www.who.int/wer/2015/wer9035.pdf?ua=1
- Pertussis vaccines: World Health Organization. Weekly epidemiological record 2010; 85(40): 385–400. Available from: http://www.who.int/wer/2010/wer8540.pdf
- 25. Чупринина РП, Алексеева ИА. Способ получения коклюшного компонента комбинированных вакцин. Бюллетень «Изобретения. Полезные модели» 2015; № 3 (27.01.15). Патент № 2540014. [Chuprinina RP, Alekseeva IA. The Method of Obtaining the Pertussis Component of Combined Vaccines. The Bulletin «Inventions. Utility model» 2015; No. 3 (27.01.15). Patent No. 2540014 (In Russ.)]
- 26. Witt MA, Arias L, Katz PH, Truong ET, Witt DJ. Reduced Risk of Pertussiss among Persons ever Vaccinated with Whole Cell Pertussis Vaccine Compared to Recipients of Acellular Pertussis Vaccines in a Large US Cohort. Clin Infect Dis. 2013; 56: 1248–54.
- Revised Guidance on the Choice of Pertussis Vaccines. World Health Organization. Weekly Epidemiological Record 2014; 89(30): 337–44. Available from: http://www.who.int/ wer/2013/wer8930.pdf?ua=1
- Meeting of the Strategic Advisory Group of Experts on Immunization, April 2014 Conclusions and Recommendations.
 World Health Organization. Weekly epidemiological record 2014; 89(21): 221–36. Available from: http://www.who.int/wer/2014/wer8921.pdf?ua=1
- 29. Николаева АМ, Языкова МН, Калашникова ЕА, Иванов АВ, Сперанская ВН. Изучение безопасности и антигенной структуры новой бесклеточной коклюшной вакцины. Российский иммунологический журнал 2014; 8(3): 914–6. [Nikolaeva AM, Yazykova MN, Kalashnikova EA, Ivanov AV, Speranskaya VN. The Study of the Safety and Antigenic Structure of the New Acellular Pertussis Vaccine. Russian Journal of Immunology 2014; 8(3): 914–6 (In Russ.)]
- 30. Синяшина ЛН. Молекулярно-генетическая модификация бактерий рода Bordetella для создания рекомбинантных препаратов для профилактики коклюша: автореф. дис. ... д-ра мед. наук. М.; 2017. [Sinyashina LN. Molecular Genetic Modification of Bacteria of the Genus Bordetella For Creation of Recombinant Drugs for the Prevention of Pertussis. Dr. Med. Sci. [Thesis]. Moscow; 2017 (In Russ.)]

Authors

Federal State Budgetary Institution «Scientific Centre for Expert Evaluation of Medicinal Products» of the Ministry of Health of the Russian Federation, 8/2 Petrovsky boulevard, Moscow 127051, Russian Federation

Irina A. Alekseeva. Chief Expert of the Laboratory of Toxoids and Antitoxic Products of the Testing Centre for Evaluation of Medicinal Immunobiological Products' Quality. Doctor of Medical Sciences

Olga V. Perelygina. Head of the Laboratory of Toxoids and Antitoxic Products of the Testing Centre for Evaluation of Medicinal Immunobiological Products' Quality. Candidate of Medical Sciences

Received 9 October 2017 Accepted 8 February 2018

Юрий Иванович Обухов (к 60-летию со дня рождения)

Yuri Ivanovich Obukhov (on the 60th anniversary)

7 января 2018 г. исполнилось 60 лет со дня рождения начальника управления экспертизы противобактериальных МИБП Центра и экспертизы контроля МИБП ФГБУ «НЦЭСМП» Минздрава России Юрия Ивановича Обухова.

Ю.И. Обухов родился в 1958 г. в Челябинске. В 1982 г. окончил Военно-медицинский факультет при Томском государственном медицинском институте по специальности «Лечебно-профилактическое дело». В 1993 г. окончил факультет руководящего медицинского состава Военно-медицинской академии им. С.М. Кирова по специальности «Бактериология».

С 1982 по 1990 г. проходил службу на должностях врача-бактериолога в военно-медицинских учреждениях.

С 1993 по 2010 г. — в Главном центре государственного санитарно-эпидемиологического надзора Министерства обороны Российской Федерации, где прошел путь от начальника бактериологического отделения до главного микробиолога Министерства обороны Российской Федерации.

Юрий Иванович в 1997—1998 гг. участвовал в боевых действиях на территории Республики Таджикистан. Совместно с органами государственной власти и медицинской службы Республики Таджикистан участвовал в ликвидации эпидемических вспышек брюшного тифа, дизентерии, острых кишечных инфекций, вирусного гепатита А

среди военнослужащих и местного населения. В 2000—2001 гг. участвовал в контртеррористической операции на Северном Кавказе. В 2002—2003 гг. выполнял миротворческую миссию в составе российского воинского контингента в Косово.

С 2011 г. по настоящее время — начальник управления экспертизы противобактериальных МИБП Центра экспертизы качества МИБП ФГБУ «НЦЭСМП» Минздрава России.

Ю.И. Обухов — высококвалифицированный специалист в области микробиологии, автор более 40 печатных работ по вопросам организации противоэпидемических мероприятий и лабораторной диагностики в очагах инфекционных заболеваний, проведения экспертизы иммунобиологических лекарственных препаратов, а также научно-методических руководств и учебных пособий: «Военная микробиология», «Санитарная микробиология», «Дизентерия и другие ОКИ», «Лабораторная диагностика брюшного тифа», «Руководство по проведению доклинических исследований лекарственных средств» и «Руководство по экспертизе лекарственных средств».

Юрий Иванович — ветеран боевых действий, награжден медалью Суворова и медалью «За операции в Косово». Указом Президента Российской Федерации от 12 апреля 2010 г. № 452 Ю.И. Обухову присвоено почетное звание «Заслуженный врач Российской Федерации».

ОПУБЛИКОВАННЫЕ ИЗДАНИЯ ФГБУ «НЦЭСМП» МИНЗДРАВА РОССИИ

Руководство по составлению нормативной документации на лекарственные препараты в виде аэрозолей и спреев. — М.: ООО «Типография «Миттель Пресс», 2017. — 76 с.

Целью разработки настоящего руководства является совершенствование подходов к стандартизации препаратов в лекарственных формах «Спреи» и «Аэрозоли», повышение требований к их качеству, унификация изложения разделов нормативной документации на отечественные и зарубежные лекарственные средства.

В руководстве приведены общие требования к аэрозолям для ингаляции.

Руководство по составлению нормативной документации на препараты в лекарственных формах для парентерального применения. — М.: ООО «Типография «Миттель Пресс», 2017. — 88 с.

Настоящее руководство устанавливает общие требования к составлению, изложению и оформлению нормативной документации на препараты в жидких и твердых лекарственных формах для парентерального применения.

Руководство предназначено для экспертов, осуществляющих экспертизу качествалекарственных средств в рамках государственной регистрации, а также для специалистов, занятых в области производства и регистрации лекарственных средств.

Информацию о порядке приобретения можно получить по телефонам: +7 (499) 241-90-73, +7 (499) 241-36-85 или на официальном сайте $\Phi\Gamma$ БУ «НЦЭСМП» Минздрава России www.regmed.ru

ПОДПИСНАЯ КАМПАНИЯ НА ПЕРВОЕ ПОЛУГОДИЕ 2018 ГОДА

Оформить подписку на журнал «БИОпрепараты. Профилактика, диагностика, лечение» можно в любом почтовом отделении России.

Подписной индекс издания:

в каталоге Агентства «Роспечать» **«Газеты. Журналы» - 25120** С любого номера в региональных агентствах подписки:

> Урал-Пресс (www.ural-press.ru) Информнаука (www.informnauka.ru)

По объединенному каталогу «Пресса России» (www.pressa-rf.ru) – Ц10588

