УДК 615.371:616.932:615.038:615.065 DOI: 10.30895/2221-996X-2018-18-1-42-49 ШИФР 03.02.03 14.01.09 СПЕЦИАЛЬНОСТЬ Микробиология Инфекционные болезни

Эффективность и безопасность вакцин для профилактики холеры

* А. А. Горяев, Л. В. Саяпина, Ю. И. Обухов, В. П. Бондарев

Федеральное государственное бюджетное учреждение «Научный центр экспертизы средств медицинского применения» Министерства здравоохранения Российской Федерации, Российская Федерация, 127051, Москва, Петровский бульвар, д. 8, стр. 2

Холера — острое диарейное заболевание, вызываемое токсигенными штаммами Vibrio cholerae O1 и O139 серогрупп, по-прежнему остается одной из основных проблем мирового здравоохранения. Несмотря на существующие методы лечения и улучшение качества питьевой воды, санитарии и гигиены, ежегодно от холеры, по оценкам ВОЗ, умирают около 100000 человек. В последние годы одним из эффективных способов предупреждения и ликвидации эпидемий холеры является применение оральных холерных вакцин. Согласно Глобальной дорожной карте ВОЗ, массовая вакцинация должна помочь к 2030 г. добиться снижения смертности от холеры на 90 % в мире и элиминирования заболевания в 20 странах. В обзоре изложены основные исторические этапы создания холерных вакцин: парентеральных, химических, инактивированных и живых оральных вакцин. Представлено сравнительное описание состава действующих и вспомогательных веществ вакцин Dukoral®, mORC-VAX®, Shanchol®, Euvichol®, Vaxchora®, Oravacs® и вакцины холерной бивалентной химической. Проанализированы результаты международных многоцентровых клинических исследований оральных инактивированных, живой и химической холерных вакцин. Рассмотрены вопросы, касающиеся изучения эффективности и безопасности вакцин, используемых для профилактики холеры.

Ключевые слова: холера; вакцины; холерные вакцины; живые вакцины; инактивированные вакцины; профилактика холеры; Vibrio cholerae

Для цитирования: Горяев АА, Саяпина ЛВ, Обухов ЮИ, Бондарев ВП. Эффективность и безопасность вакцин для профилактики холеры. БИОпрепараты. Профилактика, диагностика, лечение 2018; 18(1): 42–49. DOI: 10.30895/2221-996X-2018-18-1-42-49

* Контактное лицо: Горяев Артем Анатольевич; Goryaev@expmed.ru

Efficacy and Safety of Cholera Vaccines

* A. A. Goryaev, L. V. Sayapina, Yu. I. Obukhov, V. P. Bondarev

Federal State Budgetary Institution «Scientific Centre for Expert Evaluation of Medicinal Products» of the Ministry of Health of the Russian Federation, 8/2 Petrovsky boulevard, Moscow 127051, Russian Federation

Cholera is an acute diarrheal disease caused by toxigenic strains of *Vibrio cholerae* O1 and O139 serogroups. It still remains a major global healthcare problem. According to WHO, about 100,000 people die from cholera every year, despite the modern methods of treatment, improvement in the quality of drinking water, sanitation and hygiene. In recent years, oral cholera vaccines have proved an effective tool for preventing and curbing cholera epidemics. According to the WHO Ending Cholera — A Global Roadmap, mass vaccination should help reduce the mortality resulting from cholera by 90 % worldwide by 2030 and eliminate the disease in 20 countries. The review outlines the main historical stages in the development of cholera vaccines: parenteral, chemical, inactivated and live oral vaccines. The paper compares active ingredients and excipients used in Dukoral®, mORC-VAX®, Shanchol®, Euvichol®, Vaxchora®, Oravacs® and the cholera bivalent chemical vaccine. The results of international multicenter clinical trials of oral inactivated, live and chemical cholera vaccines are analysed. Issues related to efficacy and safety studies of cholera vaccines are considered.

Key words: cholera; vaccines; cholera vaccines; live vaccines; inactivated vaccines; cholera prevention; Vibrio cholerae

For citation: Goryaev AA, Sayapina LV, Obukhov Yul, Bondarev VP. Efficacy and Safety of Cholera Vaccines. BIOpreparations. Prevention, Diagnosis, Treatment 2018; 18(1): 42–49. DOI: 10.30895/2221-996X-2018-18-1-42-49

* Contact person: Goryaev Artem Anatolievich; Goryaev@expmed.ru

На сегодняшний день холера остается одной из основных проблем здравоохранения мирового значения, актуальной в основном для стран, в которых отсутствуют доступ к чистой питьевой воде и надлежащие средства санитарии и гигиены, либо в странах со сложной военно-политической обстановкой, либо пострадавших от чрезвычайных ситуаций. По некоторым оценкам, в мире ежегодно регистрируются от 1,3 до 4,0 млн случаев заболеваний холерой, при этом погибают от 21 000 до 143 000 человек [1, 2].

Возбудителем холеры являются токсигенные штаммы Vibrio cholerae O1 и O139 серогрупп. Серогруппа O1 по ряду фенотипических и генетических признаков подразделяется на два биовара — классический и Эль-Тор. Также О1 серогруппа по структуре липополисахарида (ЛПС) классифицируется на три серотипа: Инаба, Огава и Гикошима [3-5]. Известно, что первые шесть пандемий холеры (1816-1926 гг.) были вызваны V. cholerae 01 классического биовара, в то время как возбудителем седьмой пандемии (с 1961 г. по настоящее время) является V. cholerae O1 Эль-Тор. С 1992 г. вибрионы новой 0139 серогруппы вызывали крупные вспышки холеры в странах Юго-Восточной Азии. В последние годы эпидемии холеры были вызваны «измененными» вариантами V. cholerae Эль-Тор, имеющими характерные фенотипические свойства Эль-Тор биовара, но продуцирующими холерный токсин (XT) классического биовара [3-5].

Цель работы — изложение основных исторических этапов создания холерных вакцин, а также оценка эффективности и безопасности современных вакцин, применяемых для профилактики холеры.

Еще в конце XIX века Р. Кох и его коллеги отмечали, что переболевшие холерой люди были зашищены от инфекции во время той же эпидемии [6]. Первая холерная вакцина была разработана Х. Ферраном в 1884 г. и состояла из разведений бульонной культуры, полученной путем высева испражнений больных людей [7, 8]. Однако массовое применение живой парентеральной вакцины Х. Феррана во время вспышки холеры в Испании не подтвердило ее эффективность, при этом она была реактогенной [6-8]. Несмотря на неудачную кампанию в Испании, работы по созданию вакцины против холеры продолжились. В 1892 г. В.А. Хавкин предложил способ вакцинации, состоящий из двух последовательных подкожных введений живых вакцин с интервалом в 6 сут. Первая вакцина содержала холерные вибрионы, ослабленные длительным культивированием при температуре 39 °C, вторая — вибрионы, вирулентность которых была повышена пассированием на морских свинках [8, 9]. Исследования, проводившиеся в 1893-1896 гг. в Индии, показали, что из 5778 привитых вакциной В.А. Хавкина заболели холерой 27 человек, при этом среди 6549 невакцинированных — 198 человек [8]. В 1902 г. в Японии была применена разработанная В. Колле парентеральная вакцина, состоящая из инактивированных нагреванием клеток V. cholerae, эффективность которой составила более 80 % [7]. Несмотря на то что большинство разрабатываемых в то время вакцин использовали парентерально, в 1893 г. Д.К. Заболотный и И.Г. Савченко на себе доказали возможность пероральной вакцинации [6]. Позднее, в 1920-1930 гг., в Индии и Китае проводились полевые исследования «биливакцины», состоящей из таблетки с желчью и таблетки, содержащей более 70-109 инактивированных вибрионов. Было показано, что вакцина обладала одинаковой эффективностью с парентеральной инактивированной цельноклеточной вакциной (82 и 80 % соответственно). При этом «биливакцина» вызывала частые нежелательные реакции (тошнота, рвота и диарея), что, по-видимому, послужило основанием для прекращения дальнейших исследований [10].

В последующие годы в мире для профилактики холеры использовались различные парентеральные вакцины, включая инактивированные цельноклеточные, очищенные липополисахаридные, инактивированные цельноклеточные с различными адъювантами и липополисахарид-холероген конъюгированные вакцины. В СССР были разрешены к применению холерная вакцина, состоящая из взвеси убитых микробных клеток холерного вибриона, и холероген-анатоксин, представлявший собой очищенный и концентрированный центрифугат бульонной культуры токсигенного штамма V. cholerae 569B [8]. Парентеральные холерные вакцины были малоэффективными (менее 50 %), обеспечивали непродолжительную защиту (3-6 мес.) и имели высокий риск возникновения нежелательных реакций: внутримышечное или подкожное введение препарата приводило к локальной боли, эритеме, уплотнению мягких тканей, лихорадке, недомоганию и головной боли у большинства вакцинированных людей. В связи с этим ВОЗ не рекомендует применение парентеральных холерных вакцин [11].

Последующие многочисленные исследования показали, что иммунитет человека против холеры в основном обусловлен антибактериальными и антитоксическими интерстициальными антителами (slgA) к ЛПС и ХТ. При этом установлено, что сывороточные вибриоцидные антитела, обнаруживаемые в сыворотке крови людей, перенесших холеру, или вакцинированных лиц, несмотря на корреляцию между повышением уровня их титра и снижением риска инфицирования, невозможно рассматривать как непосредственную защиту от холеры [4, 12, 13]. Таким образом, понимание механизма формирования местного иммунитета кишечника против вибрионов *V. cholerae* предопределило создание оральных холерных вакцин, показавших свою безопасность и более высокую эффективность по сравнению с парентеральными холерными вакцинами.

В настоящее время в мире лицензированы шесть оральных холерных вакцин (Dukoral®, mORC-VAX®, Shanchol®, Euvichol®, Vaxchora®, Oravacs®), в Российской Федерации зарегистрирована вакцина холерная бивалентная химическая (таблетки, покрытые кишечнорастворимой оболочкой, производства ФКУЗ РосНИПЧИ «Микроб» Роспотребнадзора. Россия).

Вакцина Dukoral®

Dukoral® («Valneva Sweden AB», Швеция) представляет собой четырехвалентную оральную инактивированную вакцину, состоящую из инактивированных нагреванием или формалином вибрионов *V. cholerae* О1 и рекомбинантной В-субъединицы ХТ (табл. 1). Вакцина выпускается в комплекте с бикарбонатным буфером, необходимым для нейтрализации соляной кислоты в желудке. Стандартный курс вакцинации взрослых и детей в возрасте от 6 лет состоит из приема двух доз с интервалом 1–6 недель, детей в возрасте от 2 до 6 лет — 3 доз с интервалом 1–6 недель [14]. Вакцина Dukoral® была разрешена к применению в Швеции в 1991 г., в последующие годы она была зарегистрирована более чем в 60 странах.

Эффективность вакцины Dukoral® была изучена в трех рандомизированных двойных плацебо-контролируемых клинических исследованиях (КИ) в Бангладеш и в Перу. Исследование было проведено в Бангладеш в 1985—1988 гг. на 90 000 добровольцах в возрасте от 2 до 65 лет, разделенных на три равные группы. Первая группа получала вакцину, содержащую инактивированные клетки V. cholerae и В-субъединицу XT; вторая группа — вакцину, содержащую только инактивированные клетки V. cholerae; третья группа — плацебо (E. coli K12).

Таблица 1. Холерные вакцины

Наи- мено- вание	Вакцина холер- ная бивалентная химическая	Dukoral®	mORC-Vax® / Shanchol® / Euvichol®	Vaxchora®	OraVacs®
Про- изво- ди- тель	ФКУЗ Россий- ский научно-ис- следовательский противочумный институт «Ми- кроб» Роспотреб- надзора, Россия	Valneva Sweden AB, Швеция	Vabiotech, Вьетнам / Shantha Biotechnics, Индия / EuBiologics Co., Ltd., Р. Корея	Pax Vax Bermuda Ltd., США	Shanghai United Cell Biotechnology, Китай
Фор- ма вы- пуска	Таблетки, по- крытые кишеч- норастворимой оболочкой	Суспензия в комплекте с гранулами шипучими для приготовления раствора для приема внутрь	Суспензия	Суспензия в комплекте с буфером для приготовления раствора для приема внутрь	Капсулы
Со-став	1 таблетка содержит: Действующее вещество: смесь холерогена-анатоксина V. cholerae О1 классического биовара— 100 000 ± 20 000 единиц связывания холерогена-анатоксина, О-антиген V. cholerae О1— не менее 2000 услед. Вспомогательные вещества: сахароза, крахмал, тальк, кальция стеарат, целлацефат (ацетилфталилцеллюлоза)	Одна доза (3 мл) содержит: Действующие вещества: V. cholerae Phil 6973 серогруппы О1 биовара Эль-Тор серовара Инаба, инактивированные формалином, — 31,25-10° КОЕ; V. cholerae Cairo 48 серогруппы О1 классического биовара серовара Инаба, инактивированные нагреванием, — 31,25-10° КОЕ; V. cholerae Cairo 50 серогруппы О1 классического биовара серовара Огава, инактивированные нагреванием, — 31,25-10° КОЕ; V. cholerae Cairo 50 серогруппы О1 классического биовара серовара Огава, инактивированные формалием, — 31,25-10° КОЕ; Рекомбинантная В-субъединица холерного анатоксина — 1 мг. Вспомогательные вещества: натрия хлорид, натрия дигидрофосфата моногидрат, натрия гидрофосфата дигидрат, вода Гранулы шипучие (5,6 мг): натрия гидрокарбонат, лимонная кислота, ароматизатор малиновый, натрия карбонат, натрия сахаринат, натрия цитрат	Одна доза (1,5 мл) содержит: Действующие вещества: V. cholerae Phil 6973 серогруппы О1 биовара Эль-Тор серовара Инаба, инактивированные формалином, — 600 ELISA единиц; V. cholerae Cairo 48 серогруппы О1 классического биовара серовара Огава, инактивированные теплом, — 300 ELISA единиц; V. cholerae Cairo 50 серогруппы О1 классического биовара серовара Огава, инактивированные формалином, — 300 ELISA единиц; V. cholerae Cairo 50 серогруппы О1 классического биовара серовара Огава, инактивированные теплом, — 300 ELISA единиц; V. cholerae 4260 O139 серогруппы, инактивированные теплом, — 300 ELISA единиц, V. cholerae 4260 O139 серогруппы, инактивированные формалином, — 600 ELISA единиц. Вспомогательные вещества: фосфорнокислый натрий дигидрат, хлористый натрий, тиомерсал, вода	Одна доза содержит: Действующее вещество: V. cholerae CVD 103-HgR — от 4·10 ⁸ до 2·10 ⁹ КОЕ Вспомогательные вещества: сахароза, хлорид натрия, гидролизат казеина, аскорбиновая кислота, лактоза Буфер для приготовления суспензии: натрия бикарбонат, натрия карбонат, аскорбиновая кислота, лактоза	Действующее вещество: Рекомбинантная В-субъединица холерного токсина — 1 мг; Инактивированные клетки V. cholerae O1 — 5,0·10 ¹⁰ KOE
Спо- соб при- мене- ния и дозы	Взрослым: 3 таблетки, детям 11–17 лет: 2 таблетки, детям 2–10 лет: 1 таблетка. Ревакцинация: взрослым и детям 11–17 лет: 2 таблетки через 6–7 месяцев; детям 2–10 лет: 1 таблетка	Детям в возрасте от 6 лет и взрослым: 2 дозы с интервалом 1–6 недель, детям от 2 до 6 лет: 3 дозы с интервалом 1–6 недель Ревакцинация: взрослым и детям в возрасте от 6 лет: через 2 года, детям от 2 до 6 лет: через 3 месяца	Взрослым и детям от 1 года: 2 дозы с интер- валом 14 сут	Взрослым от 18 до 64 лет: одна доза	Взрослым и детям от 11 лет: по 3 капсулы с интервалом 0–7–28 сут
Эф- фек- тив- ность	Противохолер- ный иммунитет длительностью до 6 месяцев	85 % в течение первых 6 месяцев, 57 % через 2 года; У взрослых и детей старше 6 лет длительность защиты до 5 лет; У детей от 2 до 6 лет — около 6 месяцев 67 % против ETEC* в течение не менее 3 месяцев	67 % через 2 года после вакцинации у детей и взрослых	90,3 % через 10 сут, 79,5 % через 3 месяца	69,88 % через 3 месяца и 54,99 % через 6 месяцев

Продолжение табл. 1

Наи- мено- вание	Вакцина холер- ная бивалентная химическая	Dukoral®	mORC-Vax® / Shanchol® / Euvichol®	Vaxchora®	OraVacs®
Усло- вия хране- ния	От 2 до 8 °C	От 2 до 8°С, не замораживать. Стабильна в течение 1 месяца при хранении при температуре 37°С	От 2 до 8 °C, не замораживать	При темпера- туре от минус 25 до минус 15°C	От 2 до 8 °C, не заморажи- вать
Срок годно- сти	3 года	3 года	2 года	18 месяцев	2 года
Пре- ква- лифи- кация ВОЗ	_	2001 г.	Shanchol® — 2011 г., Euvichol® — 2016 г.	_	_

^{*} ETEC — Enterotoxigenic (энтеротоксигенная) Escherichia coli.

Таблица 2. Данные клинического исследования эффективности вакцины Ducoral® в Бангладеш [15]

Время, прошед- шее с момента	Показатель эффективности		ети от 2 до 6 лет	Взрослые и дети старше 6 лет	
вакцинации	вакцины	Ducoral®	плацебо	Ducoral®	плацебо
6	Количество случаев заражения холерой	0	9	4	17
6 месяцев	Эффективность, % (95 % ДИ)	100		76 (30, 92)	
1 год	Количество случаев заражения холерой	27	49	20	82
ТЮД	Эффективность, % (95 % ДИ)	44 (10, 65)		76 (60, 85)	
0	Количество случаев заражения холерой	17	26	23	58
2 года	Эффективность, % (95 % ДИ)	33 (33, 64)		60 (60, 85)	

Примечание. ДИ — доверительный интервал.

Эффективность вакцины, оцениваемая путем сравнения показателей заболеваемости холерой в 1-й группе и плацебогруппе, составляла 85 % (95 % ДИ: 56-95) в течение первых 6 мес. При этом было установлено, что продолжительность иммунитета зависела от возраста вакцинированных (табл. 2). У детей в возрасте от 2 до 6 лет в течение первого года после вакцинации эффективность снижалась более чем в два раза до 44 % (95 % ДИ: 10-65). Наряду с этим у взрослых и детей старше 6 лет, даже через два года после вакцинации, эффективность была значительно выше и составляла 60 % (95 % ДИ: 60-85) [14, 15]. Результаты второго исследования, проводимого в Перу в 1994 г. на 1563 военнослужащих, также показали высокую краткосрочную эффективность двухдозовой вакцинации (интервал между приемами доз 7-11 сут), равную 85 % (95 % ДИ: 36-97) [16]. При последующей вакцинации жителей сельской местности Перу (1993-1995 гг.) в возрасте от 2 до 65 лет разница в уровне заболеваемости в опытных и контрольной группах в течение первого года была статистически недостоверной. Вместе с тем проведение бустерной вакцинации через 10-12 мес. после первичной иммунизации повышало эффективность Dukoral® до 60,5 % (95 % ДИ: 28-79) [17].

При ретроспективном анализе данных КИ, проводимых в Бангладеш, было показано, что заболеваемость холерой среди лиц, получивших плацебо, была обратнозависима от уровня охвата вакцинацией: при охвате прививками менее 28 % населения количество случаев заболеваний холерой составляло 7,01/1000, а при охвате более 51 % населения — 1,47/1000 [18]. Таким образом, массовая иммунизация вакциной Dukoral®, помимо доказанной прямой защиты людей, обеспечивала также и формирование коллективного иммунитета [18].

Безопасность вакцины Dukoral® была подтверждена при проведении мониторинга эффективности вакцины более чем на 240 000 привитых, при этом частота неблагоприятных реакций была незначительной и составляла менее 0,2 %. Наиболее частыми отмечаемыми нежелательными реакциями были тошнота и рвота, боли в животе, которые в основном связаны с использованием входящего в комплект вакцины бикарбонатного буфера. Проведенные пострегистрационные клинические исследования также подтвердили безопасность и эффективность вакцины [15, 19], а опыт применения Dukoral® в Бейре (Мозамбик), 20 % населения которого инфицировано ВИЧ, доказал ее эффективность и безопасность у ВИЧ-инфицированных лиц [20].

Вакцины mORC-VAX®/Shanchol®/Euvichol®

Бивалентные инактивированные цельноклеточные вакцины mORC-VAX®, Shanchol®, Euvichol® создавались на основе технологии производства вакцины Dukoral®, но без использования рекомбинантной В-субъединицы XT (табл. 1).

Применение разработанной в Национальном институте гигиены и эпидемиологии (Вьетнам) вакцины ORC-Vax в КИ, проведенных в г. Хюэ в 1992-1993 гг., показало 66 % эффективность у взрослых и детей в возрасте от одного года [6, 21]. В связи с появлением холерных вибрионов новой 0139 серогруппы в 1992 г. в состав ORC-Vax дополнительно были введены инактивированные нагреванием клетки штамма V. cholerae 4260B 0139 серогруппы. Усовершенствованная вакцина ORC-Vax (Vabiotech, Вьетнам), также обеспечивающая 50 % защиту привитых людей через 3-5 лет после вакцинации, в 1997 г. была разрешена к применению во Вьетнаме и включена в национальную программу вакцинации [22]. В 2004 г. штамм V. cholerae 569B 01 Инаба был заменен на два штамма V. cholerae Cairo 48 O1 Инаба и V. cholerae Cairo 50 O1 Огава классических биоваров, при этом количество ЛПС в вакцине было увеличено в два раза. Вакцина с измененным составом была зарегистрирована во Вьетнаме под наименованием mORC-Vax® [6].

С целью глобального распространения технология производства вакцины была передана компании Shantha Biotechnics (Индия), которая в 2009 г. зарегистрировала ее в Индии под наименованием Shanchol®, и компании EuBiologics Co., Ltd. (Корея), которая зарегистрировала ее в Корее под наименованием Euvichol®.

Проведенные КИ вакцины Shanchol® подтвердили ее безопасность, хорошую переносимость и эффективность. В двойном слепом кластерно-рандомизированном плацебо-контролируемом исследовании, проведенном в Калькутте (Индия) и включавшем 66 900 человек в возрасте от одного года и старше, за три года наблюдения в группе получивших вакцину было зарегистрировано 38 случаев заболеваний холерой против 128 случаев в группе получивших плацебо (протективная эффективность — 66 %). Следует отметить, что значительная протективная защита наблюдалась у детей в возрасте от 1 года до четырех лет в течение 2 лет наблюдения, а в старших воз-

растных группах — в течение 3 лет [23]. Данные, полученные после 5 лет наблюдений, показали сохранение кумулятивной протективной эффективности вакцины Shanchol® на уровне 65 % (95 % ДИ: 52–74) [24]. Позднее в г. Дакка (Бангладеш) было проведено двойное слепое плацебо-контролируемое исследование, которое также показало безопасность и эффективность вакцины Shanchol® [25].

В 2014 г. на Филиппинах для подтверждения одинаковых профилей безопасности и эффективности вакцин Euvichol® и Shanchol® были проведены сравнительные КИ на 1263 здоровых добровольцах (777 взрослых в возрасте от 18 до 40 лет и 486 детей в возрасте от 1 до 17 лет). В ходе исследования не было выявлено случаев серьезных побочных действий, у 44 взрослых (5,7 %) и 29 детей (6,0 %) в течение первых шести суток после приема вакцины были отмечены головные боли, лихорадка и диарея, которые проходили в течение одних или нескольких суток. Показатели оценки иммунного ответа вакцины Euvichol® не отличались от соответствующих показателей вакцины Shanchol® (табл. 3) [26].

Вакцина Vaxchora®

Живая оральная вакцина Vaxchora® производства Pax Vax Bermuda Ltd. (США) была одобрена для применения в США в 2016 г. Ранее вакцина была зарегистрирована в шести странах под наименованиями Orochol, Orochol E и Mutacol, выпуск препаратов был прекращен в 2004 г. Вакцина предназначена для вакцинации взрослых туристов в возрасте от 18 до 64 лет, планирующих посещение территории с высоким риском заражения холерой [27].

Одна доза вакцины Vaxchora® содержит от $4\cdot10^8$ до $2\cdot10^9$ живых клеток V. cholerae O1 CVD 103-HgR. Штамм CVD 103-HgR был получен из штамма V. cholerae 569B путем 94 % делеции гена ctxA, ответственного за синтез A-субъединицы XT, и сохранением способности к продукции B-субъединицы XT. Кроме этого, в ген hlyA гемолизина был внедрен маркер устойчивости к ртути (mer) для дифференциации штамма CVD 103-HgR от «диких» штаммов V. cholerae [28].

Эффективность вакцины была оценена в рандомизированном контролируемом двойном слепом исследовании, проведенном на 197 добровольцах в возрасте от 18 до 45 лет, не болевших холерой и не посещавших эндемичные по холере об-

Таблица 3. Данные сравнительного рандомизированного исследования эффективности вакцин Euvichol® и Shanchol® [26]

	О1 Инаба		О1 Огава			O139			
Взрослые	Euvichol® (<i>n</i> = 377)	Shanchol® (<i>n</i> = 376)	<i>P</i> -зна- чение	Euvichol® (<i>n</i> = 377)	Shanchol® (<i>n</i> = 376)	<i>Р-</i> зна- чение	Euvichol® (<i>n</i> = 377)	Shanchol® (<i>n</i> = 376)	<i>P</i> -зна- чение
Серокон- версия на 14 сут, %	84,10	83,80	0,91	85,40	78,50	0,01	33,70	41,80	0,02
Серокон- версия на 28 сут, %	81,70	76,30	0,07	80,10	73,90	0,04	28,60	37,80	0,01
	О1 Инаба			О1 Огава			O139		
Дети	Euvichol® (<i>n</i> = 231)	Shanchol® (<i>n</i> = 235)	<i>P</i> -зна- чение	Euvichol® (<i>n</i> = 231)	Shanchol® (<i>n</i> = 235)	<i>Р-</i> зна- чение	Euvichol® (<i>n</i> = 231)	Shanchol® $(n = 235)$	<i>Р</i> -зна- чение
Серокон- версия на 14 сут, %	85,70	84,30	0,60	86,60	83,80	0,40	64,10	67,20	0,47
Серокон- версия на 28 сут, %	87,40	88,90	0,62	90,50	88,10	0,04	56,70	62,10	0,23

ласти за последние 5 лет. Через 10 сут и 3 мес. после вакцинации исследуемых заражали штаммом V. cholerae N16961 в дозе 1.105 КОЕ. Было установлено, что эффективность препарата при заражении через 10 сут составила 90,3 % (95 % ДИ: 62,7-100,0) и 79,5 % (95 % ДИ: 49,9-100,0) — через 3 мес. (табл. 4) [29]. Помимо этого, дополнительно оценивалась способность вакцины Vaxchora® к образованию вибриоцидных антител к антигенам сероваров Огава и Инаба Эль-Тор, биовара и серовара Огава классического биовара, не входящих в состав вакцины. Полученные результаты показали, что процент сероконверсии к 4 основным биоварам и сероварам в течение 10 сут после вакцинации находился в диапазоне от 71,4 до 91,0 %. Наибольшие титры антител были обнаружены к серовару Инаба, а наименьшие — к серовару Огава, при этом принадлежность к биоварам (классический и Эль-Тор) статистически не влияла на процент сероконверсии [27]. Нежелательными реакциями при применении вакцины были головная боль (43 %), дискомфорт в животе (37-41 %), недомогание (35-37 %), спазмы мышц живота (25-31 %), отсутствие аппетита (15-23 %) и тошнота/рвота (менее 4 %), которые обычно носили временный характер [27].

Вакцина OraVacs®

Вакцина OraVacs® производства Shanghai United Cell Biotechnology (Китай) лицензирована в Китае, на Филиппинах и по составу идентична вакцине Dukoral® (табл. 1). OraVacs® предназначена для иммунизации взрослых и детей старше 11 лет, курс вакцинации состоит из последовательного приема трех капсул по схеме 1–7–28 сут.

Для оценки безопасности и эффективности вакцины OraVacs® были проведены 4 КИ на 6815 взрослых и детях старше 11 лет. Показано, что менее чем в 7 % случаев наблюдались боли или дискомфорт в животе, крапивница, тошнота, диарея, головная боль после приема препарата. Эффективность вакцины, оцениваемая по уровню титров антител к ЛПС и ХТ в крови и стуле, в ходе III фазы КИ составила 69,88 % через 3 мес. и 54,99 % через 6 мес. Вакцина OraVacs®, так же как и Dukoral®, предохраняет против энтеротоксигенной кишечной палочки (ETEC) [30].

Вакцина холерная бивалентная химическая

В России зарегистрирована вакцина холерная бивалентная химическая производства ФКУЗ РосНИПЧИ «Микроб» Роспотребнадзора (Россия), в состав которой входит смесь холероген-анатоксина и О-антигена (табл. 1) [31]. Одна прививочная доза вакцины составляет для взрослых 3 таблетки, для детей

в возрасте от 11 до 17 лет — 2 таблетки, для детей от 2 до 10 лет — 1 таблетка. В связи с тем что вакцина вызывает развитие иммунитета против холеры длительностью до 6 мес., ревакцинацию необходимо проводить через 6–7 мес. после вакцинации. Вакцина холерная бивалентная химическая включена в Календарь профилактических прививок Российской Федерации по эпидемическим показаниям и предназначена для вакцинации лиц, выезжающих в неблагополучные по холере страны (регионы), или в случае осложнения санитарно-эпидемиологической обстановки [32].

Результаты проведенных исследований показали ареактогенность и безопасность вакцины холерной бивалентной химической [33]. У некоторых привитых через 1-2 ч после приема были отмечены случаи слабых неприятных ощущений в эпигастральной области, урчание в животе и кашицеобразный стул [33]. По данным КИ эффективность была оценена на 276 добровольцах в возрасте от 19 лет и старше, случайно распределенных в 6 равнозначных групп по 40-50 человек: 4 группы получали различные дозы вакцины, пятая группа — плацебо и шестая группа (группа сравнения) прививалась подкожно коммерческой парентеральной холерной вакциной. В группе привитых тремя таблетками через месяц уровень среднегеометрических обратных значений титра вибриоцидных антител в сыворотке крови к серовару Инаба был равен 112 (95 % ДИ: 90-136), к Огава — 112 (95 % ДИ: 92-132), к антитоксину -200 (95 % ДИ: 152-280), при этом количество серонегативных лиц составляло 8-14 % и у 80 % выявлялись копроантитела.

Таким образом, на сегодняшний день в мире существуют различные типы оральных холерных вакцин: инактивированные цельноклеточные, инактивированные цельноклеточные с рекомбинантной В-субъединицей ХТ, смесь холероген-анатоксина и О-антигена и живая, безопасность и эффективность которых была подтверждена многочисленными КИ.

Вакцины Dukoral®, Shanchol®, Euvichol® имеют статус преквалифицированных вакцин BO3. Данный статус подтверждает качество, безопасность и эффективность вакцины в соответствии с требованиями BO3, а также дает право на их приобретение фондами OOH [11, 34]. Данные холерные вакцины широко используются BO3 при проведении массовых вакцинаций в качестве дополнительной и немедленной мер в эндемичных регионах или во время эпидемий холеры. Так, за последние 20 лет было использовано более 5 млн доз оральных холерных вакцин. Учитывая то, что в последние годы ситуация, связанная с заболеваниями холерой, в мире продолжает оставаться напряженной, в 2013 г. BO3 создала резервный запас, состоящий из 2 млн доз холерных вакцин [35, 36]. Согласно Глобальной

Таблица 4. Данные исследования эффективности вакцины Vaxchora® в профилактике умеренной и тяжелой диареи при заражении добровольцев штаммом *V. cholerae* N16961 через 10 сут и 3 месяца после вакцинации [28, 29]

	Наименование группы					
Определяемый показатель	Vaxchora®, заражение через 10 сут после вакцинации N = 35 (n, %)	Vaxchora®, заражение через 3 меся- ца после вакцинации N = 35 (n, %)	плацебо, объединенные данные по заражению через 10 сут и 3 месяца N = 66 (n, %)			
Умеренная (3–5 л в сутки) или тяжелая (> 5 л в сутки) диарея в течение 10 суток после заражения	2 (5,7)	4 (12,1)	39 (59,1)			
Эффективность вакцины*, %	90,3 (95 % ДИ: 62,7–100)	79,5 (95 % ДИ: 49,9–100)	_			

^{*} Эффективность вакцины = [Процент заболевших в группе плацебо – Процент заболевших в вакцинированной группе / Процент заболевших в группе плацебо] · 100.

дорожной карте «Ликвидировать холеру: глобальная дорожная карта на период до 2030 г.» (Ending Cholera: A Global Roadmap to 2030), разработанной Глобальной целевой группой по борьбе с холерой (Global Task Force on Cholera Control (GTFCC)), к 2030 г. планируется добиться снижения смертности от холеры на 90 % и элиминировать заболевания в 20 странах [37]. Для достижения глобальной цели будут активно применяться холерные вакцины Shanchol® и Euvichol®. Так, в 2018 г. планируется использование резервного запаса в 25 млн доз.

Заключение

Несмотря на очевидные успехи в вакцинации против холеры, необходимо проведение дальнейших исследований по совершенствованию существующих и созданию новых холерных вакцин, в том числе созданию эффективных вакцин, предназначенных для детей младше 1 года, и однодозовых вакцин, применение которых будет способствовать большему охвату вакцинируемых и снижению расходов при массовых вакцинациях. Также с целью улучшения качества и доступности холерных вакцин необходимы исследования, направленные на создание «удобных» форм выпуска и повышение стабильности вакцин при хранении и транспортировании при высоких температурах, что особенно важно для стран с жарким климатом.

Информация об отсутствии конфликта интересов. Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

Литература / References

- Ali M, Nelson AR, Lopez AL, Sack DA. Updated Global Burden of Cholera in Endemic Countries. PLoS Negl Trop Dis. 2015; 9(6): e0003832.
- World Health Organization. Cholera, 2015. Weekly Epidemiological Record 2016; 91: 433–40.
- 3. Harris JB, LaRocque RC, Qadri F, Ryan ET, Calderwood SB. Cholera. Lancet 2012; 379(9835): 2466–76.
- Clemens JD, Nair GB, Ahmed T, Qadri F, Holmgren J. Cholera. Lancet 2017; 390(10101): 1539–49.
- Смирнова НИ, Горяев АА, Кутырев ВВ. Эволюция генома возбудителя холеры в современный период. Молекулярная генетика, микробиология и вирусология 2010; 4: 11–9. [Smirnova NI, Goryaev AA, Kutyrev VV. The Evolution of the Vibrio Cholerae Genome during the Modern Period. Molecular Genetics, Microbiology and Virology 2010; 4: 11–9 (In Russ.)]
- Lopez AL, Gonzales ML, Aldaba JG, Nair GB. Killed Oral Cholera Vaccines: History, Development and Implementation Challenges. Ther Adv Vaccines 2014; 2(5): 123–36.
- 7. Artenstein AW, ed. Vaccines: A Biography. New York: Springer-Verlag New York; 2010.
- 8. Бургасов ПН. Холера Эль-Тор. 2-е изд. М.: Медицина; 1976. [Burgasov PN. Cholera El Tor. 2nd ed. Moscow: Medicine; 1976 (In Russ.)]
- 9. Bornside GH. Waldemar Haffkine's Cholera Vaccines and the Ferran-Haffkine Priority Dispute. J Hist Med Allied Sci. 1982; 37(4): 399–422.
- 10. Barua D, Greenough WB, ed. Cholera. New York: Plenum Medical Book Company, 1992.
- World Health Organization. Cholera Vaccines: WHO Position Paper — August 2017. Weekly Epidemiological Record 2017; 92: 477–500.
- 12. Leung DT, Chowdhury F, Calderwood SB, Qadri F, Ryan ET. Immune Responses to Cholera in Children. Expert Rev Anti Infect Ther. 2012; 10(4): 435–44.
- 13. Charles RC, Ryan ET. Cholera in the 21st Century. Curr Opin Infect Dis. 2011; 24(5): 472–7.
- 14. Dukoral. Cholera Vaccine (Inactivated, Oral). EPAR Summary for the Public. (EMA/643644/2014). Available

- from: http://www.ema.europa.eu/docs/en_GB/document_ library/EPAR_-_Summary_for_the_public/human/000476/ WC500037569.pdf
- 15. Clemens JD, Sack DA, Harris JR, Van Loon F, Chakraborty J, Ahmed F, et al. Field Trial of Oral Cholera Vaccines in Bangladesh: Results from Three-Year Follow-Up. Lancet 1990; 335(8684): 270–3.
- Sanchez JL, Vasquez B, Begue RE, Meza R, Castellares G, Cabezas C, et al. Protective Efficacy of Oral Whole-Cell/ Recombinant-B-Subunit Cholera Vaccine in Peruvian Military Recruits. Lancet 1994; 344(8932): 1273–6.
- Begue RE, Castellares G, Ruiz R, Hayashi KE, Sanchez JL, Gotuzzo E, et al. Community-Based Assessment of Safety and Immunogenicity of the Whole Cell Plus Recombinant B Subunit (WC/rBS) Oral Cholera Vaccine in Peru. Vaccine 1995; 13(7): 691–4.
- Ali M, Emch M, von Seidlein L, Yunus M, Sack DA, Rao M, et al. Herd Immunity Conferred by Killed Oral Cholera Vaccines in Bangladesh: a Reanalysis. Lancet 2005; 366(9479): 44–9.
- Sinclair D, Abba K, Zaman K, Qadri F, Graves PM. Oral Vaccines for Preventing Cholera. Cochrane Database Syst Rev. 2011; (3): CD008603.
- Lucas ME, Deen JL, von Seidlein L, Wang XY, Ampuero J, Puri M, et al. Effectiveness of Mass Oral Cholera Vaccination in Beira, Mozambique. N Engl J Med. 2005; 352(8): 757–67.
- 21. Trach DD, Clemens JD, Ke NT, Thuy HT, Son ND, Canh DG, et al. Field Trial of a Locally Produced, Killed, Oral Cholera Vaccine in Vietnam. Lancet 1997; 349(9047): 231–5.
- 22. Thiem VD, Deen JL, von Seidlein L, Canh DG, Anh DD, Park JK, et al. Long-term Effectiveness against Cholera of Oral Killed Whole-Cell Vaccine Produced in Vietnam. Vaccine 2006; 24(20): 4297–303.
- 23. Sur D, Kanungo S, Sah B, Manna B, Ali M, Paisley AM, et al. Efficacy of a Low-Cost, Inactivated Whole-Cell Oral Cholera Vaccine: Results from 3 Years of Follow-Up of a Randomized, Controlled Trial. PLoS Negl Trop Dis. 2011; 5(10): e1289.
- 24. Bhattacharya SK, Sur D, Ali M, Kanungo S, You YA, Manna B, et al. 5 Year Efficacy of a Bivalent Killed Whole-Cell Oral Cholera Vaccine in Kolkata, India: a Cluster-Randomised, Double-Blind, Placebo-Controlled Trial. Lancet Infect Dis. 2013; 13(12): 1050–6.
- 25. Saha A, Chowdhury MI, Khanam F, Bhuiyan MS, Chowdhury F, Khan AI, et al. Safety and Immunogenicity Study of a Killed Bivalent (O1 and O139) Whole-Cell Oral Cholera Vaccine Shanchol, in Bangladeshi Adults and Children as Young as 1 Year of Age. Vaccine 2011; 29(46): 8285–92.
- 26. Baik YO, Choi SK, Olveda RM, Espos RA, Ligsay AD, Montellano MB, et al. A Randomized, Non-Inferiority Trial Comparing Two Bivalent Killed, Whole Cell, Oral Cholera Vaccines (Euvichol vs Shanchol) in the Philippines. Vaccine 2015; 33(46): 6360–5.
- 27. Levine MM, Kaper JB, Herrington D, Ketley J, Losonsky G, Tacket CO, et al. Safety, Immunogenicity, and Efficacy of Recombinant Live Oral Cholera Vaccines, CVD 103 and CVD 103-HgR. Lancet 1988; 2(8609): 467–70.
- 28. Chen WH, Cohen MB, Kirkpatrick BD, Brady RC, Galloway D, Gurwith M, et al. Single-Dose Live Oral Cholera Vaccine CVD 103-HgR Protects against Human Experimental Infection with Vibrio Cholerae O1 El Tor. Clin Infect Dis. 2016; 62(11): 1329–35.
- 29. VAXCHORA [Summary Basis for Regulatory Action]. 2016 Available from: https://www.fda.gov/biologicsbloodvaccines/ vaccines/approvedproducts/ucm505866.htm
- 30. OraVacs Complete Insert. Available from: http://english.unitedbiotech.com.cn/sucb/en/insert/en-ocv.pdf
- 31. Вакцина холерная бивалентная химическая. Государственный реестр лекарственных средств. [Cholera Bivalent Chemical Vaccine. State Register of Medicines (In Russ.)] Available from: http://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=1a0ff5a3-f10c-499d-

- 8562-0bb242c7ccfa&t=00ca1ca0-120d-4231-aea9-910967eb5098
- 32. Об утверждении национального календаря профилактических прививок и календаря профилактических прививок по эпидемическим показаниям: приказ Министерства здравоохранения РФ от 21 марта 2014 г. № 125н. [On Approval of National Preventive Vaccination Preventive Vaccination Calendar Epidemic Indications. The Order of Ministry of Health of Russia No. 125n Dated March 21, 2014 (In Russ.)] Available from: http://ivo.garant.ru/#/document/70647158/paragraph/1:1
- 33. Сумароков АА, Иванов НР, Джапаридзе МН, Резников ЮБ, Рысцова ЕА, Никитина ГП и др. Определение оптимальной прививочной дозы оральной холерной химической бивалентной вакцины в контролируемом опыте. Журнал микробиологии, эпидемиологии и иммунобиологии 2010; (12): 55–62. [Sumarokov AA, Ivanov NR, Dzhaparidze MN, Reznikov YuB, Rystcova EA, Nikitina GP,
- et al. Determination of the Optimal Vaccination Dose of the Oral Cholera Chemical Bivalent Vaccine in a Controlled Trial 2010; (12): 55–62 (In Russ.)]
- 34. Преквалификация лекарственных средств ВОЗ. Всемирная организация здравоохранения. Информационный бюллетень № 278. 2013. [Prequalification of Medicines by WHO. World Health Organization. Fact Sheet № 278. 2013 (In Russ.)] Available from: http://www.who.int/mediacentre/factsheets/fs278/ru
- 35. Reyburn R, Deen JL, Grais RF, Bhattacharya SK, Sur D, Lopez AL, et al. The Case for Reactive Mass Oral Cholera Vaccinations. PLoS Negl Trop Dis. 2011; 5(1): e952.
- Hsiao A, Desai SN, Mogasale V, Excler JL, Digilio L. Lessons Learnt from 12 Oral Cholera Vaccine Campaigns in Resource-Poor Settings. Bull World Health Organ. 2017; 95(4): 303–12.
- 37. Ending Cholera. A Global Roadmap to 2030. World Health Organization. Available from: http://www.who.int/cholera/publications/global-roadmap.pdf

Об авторах

Федеральное государственное бюджетное учреждение «Научный центр экспертизы средств медицинского применения» Министерства здравоохранения Российской Федерации. Российская Федерация, 127051, Москва, Петровский бульвар, д. 8, стр. 2

Горяев Артем Анатольевич. Заместитель начальника управления экспертизы противобактериальных МИБП Центра экспертизы и контроля МИБП, канд. биол. наук

Саяпина Лидия Васильевна. Главный эксперт управления экспертизы противобактериальных МИБП Центра экспертизы и контроля МИБП, д-р мед. наук

Обухов Юрий Иванович. Начальник управления экспертизы противобактериальных МИБП Центра экспертизы и контроля МИБП

Бондарев Владимир Петрович. Директор Центра экспертизы и контроля МИБП, д-р мед. наук, профессор

Поступила 12.07.2017 Принята к публикации 08.02.2018

Authors

Federal State Budgetary Institution «Scientific Centre for Expert Evaluation of Medicinal Products» of the Ministry of Health of the Russian Federation, 8/2 Petrovsky boulevard, Moscow 127051, Russian Federation

Artem A. Goryaev. Deputy Head of the Division for Expert Evaluation of Antibacterial Medicinal Immunobiological Products of the Centre for Evaluation and Control of Medicinal Immunobiological Products. Candidate of Biological Sciences

Lidia V. Sayapina. Chief Expert of the Division for Expert Evaluation of Antibacterial Medicinal Immunobiological Products of the Centre for Evaluation and Control of Medicinal Immunobiological Products. Doctor of Medical Sciences

Yuri I. Obukhov. Head of the Division for Expert Evaluation of Antibacterial Medicinal Immunobiological Products of the Centre for Evaluation and Control of Medicinal Immunobiological Products

Vladimir P. Bondarev. Director of the Centre for Evaluation and Control of Medicinal Immunobiological Products. Doctor of Medical Sciences, Professor

Received 12 July 2017 Accepted 8 February 2018